Chapter 4

Introduction to
Compressible Flow

4.1 INTRODUCTION

In earlier chapters we developed the fundamental relations that are needed for the
analysis of fluid flow. We have seen the special form that some of these take for
the case of constant-density fluids. Our main interest now is in compressible fluids
or gases. We shall soon learn that it is not uncommon to encounter gases that are
traveling faster than the speed of sound. Furthermore, when in this situation, their
behavior is quite different than when traveling slower than the speed of sound. Thus
we begin by developing an expression for sonic velocity through an arbitrary medium.
This relation is then simplified for the case of perfect gases. We then examine subsonic
and supersonic flows to gain some insight as to why their behavior is different.

The Mach number is introduced as a key parameter and we find that for the case of
a perfect gas it is very simple to express our basic equations and many supplementary
relations in terms of this new parameter. The chapter closes with a discussion of
the significance of h—s and T—s diagrams and their importance in visualizing flow
problems.

4.2 OBJECTIVES
After completing this chapter successfully, you should be able to:

1. Explain how sound is propagated through any medium (solid, liquid, or gas).

2. Define sonic velocity. State the basic differences between a shock wave and a
sound wave.

3. (Optional) Starting with the continuity and momentum equations for steady,
one-dimensional flow, utilize a control volume analysis to derive the general
expression for the velocity of an infinitesimal pressure disturbance in an arbi-
trary medium.
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84 INTRODUCTION TO COMPRESSIBLE FLOW

4. State the relations for:
a. Speed of sound in an arbitrary medium
b. Speed of sound in a perfect gas
¢. Mach number

5. Discuss the propagation of signal waves from a moving body in a fluid by ex-
plaining zone of action, zone of silence, Mach cone, and Mach angle. Compare
subsonic and supersonic flow in these respects.

6. Write an equation for the stagnation enthalpy (h,) of a perfect gas in terms of
enthalpy (%), Mach number (M), and ratio of specific heats (y).

7. Write an equation for the stagnation temperature (7;) of a perfect gas in terms
of temperature (7)), Mach number (M), and ratio of specific heats (y).

8. Write an equation for the stagnation pressure (p,) of a perfect gas in terms of
pressure (p), Mach number (M), and ratio of specific heats (y).

9. (Optional) Demonstrate manipulative skills by developing simple relations in
terms of Mach number for a perfect gas, such as

-1 y/(y—1)
po=p (1 - VTMz)

10. Demonstrate the ability to utilize the concepts above in typical flow problems.

4.3 SONIC VELOCITY AND MACH NUMBER

We now examine the means by which disturbances pass through an elastic medium.
A disturbance at a given point creates a region of compressed molecules that is passed
along to its neighboring molecules and in so doing creates a traveling wave. Waves
come in various strengths, which are measured by the amplitude of the disturbance.
The speed at which this disturbance is propagated through the medium is called the
wave speed. This speed not only depends on the type of medium and its thermody-
namic state but is also a function of the strength of the wave. The stronger the wave
is, the faster it moves.

If we are dealing with waves of large amplitude, which involve relatively large
changes in pressure and density, we call these shock waves. These will be studied in
detail in Chapter 6. If, on the other hand, we observe waves of very small amplitude,
their speed is characteristic only of the medium and its state. These waves are of vital
importance to us since sound waves fall into this category. Furthermore, the presence
of an object in a medium can only be felt by the object’s sending out or reflecting
infinitesimal waves which propagate at the characteristic sonic velocity.

Let us hypothesize how we might form an infinitesimal pressure wave and then
apply the fundamental concepts to determine the wave velocity. Consider a long
constant-area tube filled with fluid and having a piston at one end, as shown in
Figure 4.1. The fluid is initially at rest. At a certain instant the piston is given an
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Figure 4.1 Initiation of infinitesimal pressure pulse.

incremental velocity d 'V to the left. The fluid particles immediately next to the piston
are compressed a very small amount as they acquire the velocity of the piston.

As the piston (and these compressed particles) continue to move, the next group
of fluid particles is compressed and the wave front is observed to propagate through
the fluid at the characteristic sonic velocity of magnitude a. All particles between
the wave front and the piston are moving with velocity dV to the left and have been
compressed from p to p + dp and have increased their pressure from p to p + dp.

We next recognize that this is a difficult situation to analyze. Why? Because it is
unsteady flow! [As you observe any given point in the tube, the properties change
with time (e.g., pressure changes from p to p + dp as the wave front passes).] This
difficulty can easily be solved by superimposing on the entire flow field a constant
velocity to the right of magnitude a. This procedure changes the frame of reference to
the wave front as it now appears as a stationary wave. An alternative way of achieving
this result is to jump on the wave front. Figure 4.2 shows the problem that we now
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Figure 4.2 Steady-flow picture corresponding to Figure 4.1.
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have. Note that changing the reference frame in this manner does not in any way alter
the actual (static) thermodynamic properties of the fluid, although it will affect the
stagnation conditions. Since the wave front is extremely thin, we can use a control
volume of infinitesimal thickness.

Continuity

For steady one-dimensional flow, we have

m = pAV = const (2.30)
But A = const; thus

pV = const “.1)
Application of this to our problem yields
pa = (p+dp)a—dV)
Expanding gives us
HOT

;ﬁ: a—pdv+adp—Mv

Neglecting the higher-order term and solving for dV, we have
_adp
I

dv 4.2)

Momentum

Since the control volume has infinitesimal thickness, we can neglect any shear stresses
along the walls. We shall write the x-component of the momentum equation, taking
forces and velocity as positive if to the right. For steady one-dimensional flow we
may write

Y Fo= gﬁ(voutx — Vin,) (3.46)
_ _ pAa _ B
%A (/+ dp)A = . [y{ dv) /]
Adp = P29 4y
8¢

Canceling the area and solving for dV, we have
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— gcdp
pa

dv

(4.3)

Equations (4.2) and (4.3) may now be combined to eliminate dV, with the result

d
=g L (4.4)
dp

However, the derivative dp/dp is not unique. It depends entirely on the process. Thus
it should really be written as a partial derivative with the appropriate subscript. But
what subscript? What kind of a process are we dealing with?

Remember, we are analyzing an infinitesimal disturbance. For this case we can
assume negligible losses and heat transfer as the wave passes through the fluid. Thus
the process is both reversible and adiabatic, which means that it is isentropic. (Why?)
After we have studied shock waves, we shall prove that very weak shock waves (i.e.,
small disturbances) approach an isentropic process in the limit. Therefore, equation
(4.4) should properly be written as

f=&(@> 4.5)

ap

This can be expressed in an alternative form by introducing the bulk or volume
modulus of elasticity E,. This is a relation between volume or density changes that
occurs as a result of pressure fluctuations and is defined as

_ (%) _ (%
s l) e

Thus

= ()
=g (=2 @.7)
P

Equations (4.5) and (4.7) are equivalent general relations for sonic velocity through
any medium. The bulk modulus is normally used in connection with liquids and
solids. Table 4.1 gives some typical values of this modulus, the exact value depending
on the temperature and pressure of the medium. For solids it also depends on the
type of loading. The reciprocal of the bulk modulus is called the compressibility.
What is the sonic velocity in a truly incompressible fluid? [Hint: What is the value of
(8p/9p)s?

Equation (4.5) is normally used for gases and this can be greatly simplified for the
case of a gas that obeys the perfect gas law. For an isentropic process, we know that
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Table 4.1 Bulk Modulus Values for Common Media

Medium Bulk Modulus (psi)
Oil 185,000-270,000
Water 300,000-400,000
Mercury approx. 4,000,000
Steel approx. 30,000,000
pv’ = const or p = p” const 4.8)

Thus

0
(_p) = yp? ! const
ap /,

But from (4.8), the constant = p/p". Therefore,

ap P p
(—) =yp'~'— =y =yRT
ap p P

and from (4.5)

a’* = yg.RT 4.9)
or

a=+ygRT 4.10)

Notice that for perfect gases, sonic velocity is a function of the individual gas and
temperature only.

Example 4.1 Compute the sonic velocity in air at 70°F.

a® = yg.RT = (1.4)(32.2)(53.3) (460 + 70)
a = 1128 ft/sec

Example 4.2 Sonic velocity through carbon dioxide is 275 m/s. What is the temperature in
Kelvin?
a’ =yg.RT
(275)% = (1.29)(1)(189)(T")
T =310.2K
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Always keep in mind that in general, sonic velocity is a property of the fluid and
varies with the state of the fluid. Only for gases that can be treated as perfect is the
sonic velocity a function of temperature alone.

Mach Number
We define the Mach number as

<
I

.11

Q<

where

V = the velocity of the medium

2
1l

sonic velocity through the medium

It is important to realize that both V and a are computed locally for conditions that
actually exist at the same point. If the velocity at one point in a flow system is twice
that at another point, we cannot say that the Mach number has doubled. We must seek
further information on the sonic velocity, which has probably also changed. (What
property would we be interested in if the fluid were a perfect gas?)

If the velocity is less than the local speed of sound, M is less than 1 and the flow is
called subsonic. If the velocity is greater than the local speed of sound, M is greater
than 1 and the flow is called supersonic. We shall soon see that the Mach number is
the most important parameter in the analysis of compressible flows.

4.4 WAVE PROPAGATION

Let us examine a point disturbance that is at rest in a fluid. Infinitesimal pressure
pulses are continually being emitted and thus they travel through the medium at sonic
velocity in the form of spherical wave fronts. To simplify matters we shall keep track
of only those pulses that are emitted every second. At the end of 3 seconds the picture
will appear as shown in Figure 4.3. Note that the wave fronts are concentric.

Now consider a similar problem in which the disturbance is no longer stationary.
Assume that it is moving at a speed less than sonic velocity, say a/2. Figure 4.4
shows such a situation at the end of 3 seconds. Note that the wave fronts are no longer
concentric. Furthermore, the wave that was emitted at ¢+ = 0 is always in front of the
disturbance itself. Therefore, any person, object, or fluid particle located upstream
will feel the wave fronts pass by and know that the disturbance is coming.

Next, let the disturbance move at exactly sonic velocity. Figure 4.5 shows this case
and you will note that all wave fronts coalesce on the left side and move along with
the disturbance. After a long period of time this wave front would approximate a
plane indicated by the dashed line. In this case, no region upstream is forewarned of
the disturbance as the disturbance arrives at the same time as the wave front.
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Figure 4.3 Wave fronts from a stationary disturbance.
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Figure 4.4 Wave fronts from subsonic disturbance.

The only other case to consider is that of a disturbance moving at velocities greater
than the speed of sound. Figure 4.6 shows a point disturbance moving at Mach number
= 2 (twice sonic velocity). The wave fronts have coalesced to form a cone with the
disturbance at the apex. This is called a Mach cone. The region inside the cone is
called the zone of action since it feels the presence of the waves. The outer region
is called the zone of silence, as this entire region is unaware of the disturbance. The
surface of the Mach cone is sometimes referred to as a Mach wave; the half-angle
at the apex is called the Mach angle and is given the symbol w. It should be easy to
see that

4.12)

. a 1
sin = = = —
K=y ~=u
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Figure 4.5 Wave fronts from sonic disturbance.
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Figure 4.6 Wave fronts from supersonic disturbance.

In this section we have discovered one of the most significant differences between
subsonic and supersonic flow fields. In the subsonic case the fluid can “sense” the
presence of an object and smoothly adjust its flow around the object. In supersonic
flow this is not possible, and thus flow adjustments occur rather abruptly in the
form of shock or expansion waves. We study these in great detail in Chapters 6
through 8.
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4.5 EQUATIONS FOR PERFECT GASES
IN TERMS OF MACH NUMBER

In Section 4.4 we saw that supersonic and subsonic flows have totally different
characteristics. This suggests that it would be instructive to use Mach number as a
parameter in our basic equations. This can be done very easily for the flow of a perfect
gas since in this case we have a simple equation of state and an explicit expression
for sonic velocity. Development of some of the more important relations follow.

Continuity

For steady one-dimensional flow with a single inlet and a single outlet, we have
m = pAV = const (2.30)

From the perfect gas equation of state,

p
= 1.13
P= 2T (1.13)
and from the definition of Mach number,
V = Ma “4.11)

Also recall the expression for sonic velocity in a perfect gas:

a=+ygRT (4.10)

Substitution of equations (1.13), (4.11), and (4.10) into (2.30) yields

p

V8
OA‘/ = —AM Q(Rz = pAM

RT

Thus for steady one-dimensional flow of a perfect gas, the continuity equation be-
comes

= pAM % = const (4.13)

Stagnation Relations

For gases we eliminate the potential term and write
V2
28

hy=h+ (3.18)
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Knowing
V2 =M?**  [from (4.11)]
and
a* = yg.RT (4.9)
we have
h,=h+wg%§cm=h+@ (4.14)

From equations (1.49) and (1.50) we can write the specific heat at constant pressure
in terms of y and R. Show that

cp = ﬁ (4.15)

Combining (4.15) and (4.14), we have

no=h+mY L7 (4.16)
But for a gas we can say that

h=c,T (1.48)
Thus
he=h+ ML _"p

or

—1
h = h (1 n VTM2> “17)

Using h = ¢, T and h; = c,T;, this can be written as

—1
T, =T <1 + ”TW) (4.18)

Equations (4.17) and (4.18) are used frequently. Memorize them!
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Now, the stagnation process is isentropic. Thus y can be used as the exponent n
in equation (1.57), and between any two points on the same isentropic, we have

T\ "/ =D
L. <_2> (4.19)
Di T,

Let point 1 refer to the static conditions, and point 2, the stagnation conditions. Then,
combining (4.19) and (4.18) produces

T y/(y=1 —1 y/(y=1
po_ <?> _ <1 y -t M2> (4.20)
p
or
1 y/(y=1)
pi=r (1 + X 5 Mz) 421

This expression for total pressure is important. Learn it!

Example 4.3 Air flows with a velocity of 800 ft/sec and has a pressure of 30 psia and
temperature of 600°R. Determine the stagnation pressure.

a = (yg.RT)'?* = [(1.4)(32.2)(53.3)(600)]'/? = 1201 ft/scc

Vv 800
M=—=—=0.
a 1201 0666

y—1_, y/(y=1 14—1 R 1.4/(1.4-1)
Pt =D 1+TM =301+ > (0.666)

pr = (30)(1 + 0.0887)>° = (30)(1.346) = 40.4 psia

Example 4.4 Hydrogen has a static temperature of 25°C and a stagnation temperature of
250°C. What is the Mach number?

_1
Tf=T<1+VTM2>

141 -1
(250 4+ 273) = (25 + 273) (1 +— M2>
523 = (298)(1 + 0.205M72)

M?>=3683 and M =192

Stagnation Pressure—Energy Equation

For steady one-dimensional flow, we have
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d
P A, (T, — T) + T, ds; + Sw, = 0 (3.25)

Pr
For a perfect gas,
pr = pRT, (4.22)

Substitute for the stagnation density and show that equation (3.25) can be written as

——=|+—+—7=0 (4.23)
Pt R T;

@ n d& ] T ds;  Sdws
R RT,

A large number of problems are adiabatic and involve no shaft work. In this case, ds,
and Sw, are zero:

dp. , ds,

St =0 (4.24)
t

This can be integrated between two points in the flow system to give

P2 =S (4.25)
Pr1 R

But since ds, = 0, ds; = ds, and we really do not need to continue writing the
subscript i under the entropy. Thus

P2 _2—% (4.26)
Pr1 R
Taking the antilog, this becomes
P2 _ p=ms)/R 4.27)
P
or
P2 _ g=srk (4.28)
Pr1

Watch your units when you use this equation! Total pressures must be absolute, and
As /R must be dimensionless. For this case of adiabatic no-work flow, As will always
be positive. (Why?) Thus p;, will always be less than p;;. Only for the limiting case
of no losses will the stagnation pressure remain constant.
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This confirms previous knowledge gained from the stagnation pressure—energy
equation: that for the case of an adiabatic, no-work system, without flow losses p,
const for any fluid. Thus stagnation pressure is seen to be a very important parameter
which in many systems reflects the flow losses. Be careful to note, however, that the
specific relation in equation (4.28) is applicable only to perfect gases, and even then

only under certain flow conditions. What are these conditions?

Summarizing the above: For steady one-dimensional flow, we have

8q = Swy + dh,
Note that equation (3.20) is valid even if flow losses are present:
If g = Sw, =0, then A, = constant

If in addition to the above, no losses occur, that is,

if §q = dw; = ds; =0, then p, = constant

Example 4.5 Oxygen flows in a constant-area, horizontal, insulated duct. Conditions at
section 1 are p; = 50 psia, 77 = 600°R, and V; = 2860 ft/sec. At a downstream section

the temperature is 7, = 1048°R.

(a) Determine M and T;;.
(b) Find V; and p».

(c) What is the entropy change between the two sections?

(@) a1 = (yg.RTHV? = [(1.4)(32.2)(48.3)(600)]"/? = 1143 ft/sec

Vi 2860
M= =2""2250
a 1143
y—1_ 1.4—-1 2
Tn=T {1+ TMI = (600) |1+ 5 (2.5)° | = 1350°R
(b) Energy:
hzl +/= h[Z +y/s
htl = h;z
and since this is a perfect gas, T = Tpr.
_ y=1.-
To=T(1+ TM2
14-1

1350 = (1048) (1 + Mzz) and M, =1.20
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Vo = Maay = (1.20)[(1.4)(32.2)(48.3)(1048)]'/? = 1813 ft/sec

Continuity:
m = p1A1Vy = pp A2 V2
but
Ay =A; and p = p/RT
Thus
Vi ;W
T, T,

Vi T 2860 /1048 ,
= P (1813)(600>( ) psta

(c) To obtain the entropy change, we need p;; and p;,.

— 1 (2.5)2

> = 854 psia

y—1 y/(y=1) 1.4/(1.4—1)
P = pi (1 + TM12> = (50) [1 + ]

Similarly,
P2 = 334 psia
o—Bs/R _ P2 _ 334

=22 _ 0391
Dr1 854
A5 L _0.039
R M0391
(0.939)(48.3)
= ZZ2) _ 0.0583 Btu/lbm-"R
(778) urbm

4.6 h—-s AND T—s DIAGRAMS

Every problem should be approached with a simple sketch of the physical system
and also a thermodynamic state diagram. Since the losses affect the entropy changes
(through ds;), one generally uses either an h—s or T—s diagram. In the case of perfect
gases, enthalpy is a function of temperature only and therefore the T—s and h—s
diagrams are identical except for scale.

Consider a steady one-dimensional flow of a perfect gas. Let us assume no heat
transfer and no external work. From the energy equation

ha +4 = ho + s (3.19)
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Figure 4.7 Stagnation reference states.

the stagnation enthalpy remains constant, and since it is a perfect gas, the total
temperature is also constant. This is represented by the solid horizontal line in Figure
4.7. Two particular sections in the system have been indicated by 1 and 2. The actual
process that takes place between these points is indicated on the 7'—s diagram.

Notice that although the stagnation conditions do not actually exist in the system,
they are also shown on the diagram for reference. The distance between the static
and stagnation points is indicative of the velocity that exists at that location (since
gravity has been neglected). It can also be clearly seen that if there is a As;_;, then
Pr2 < py and the relationship between stagnation pressure and flow losses is again
verified.

It is interesting to hypothesize a third section that just happens to be at the same
enthalpy (and temperature) as the first. What else do these points have in common?
The same velocity? Obviously! How about sonic velocity? (Recall for gases that this
is a function of temperature only.) This means that points 1 and 3 would also have
the same Mach number (something that is not immediately obvious). One can now
imagine that someplace on this diagram there is a horizontal line that represents the
locus of points having a Mach number of unity. Between this line and the stagnation
line lie all points in the subsonic regime. Below this line lie all points in the supersonic
regime. These conclusions are based on certain assumptions. What are they?
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4.7 SUMMARY

In general, waves propagate at a speed that depends on the medium, its thermody-
namic state, and the strength of the wave. However, infinitesimal disturbances travel
at a speed determined only by the medium and its state. Sound waves fall into this
latter category. A discussion of wave propagation and sonic velocity brought out a
basic difference between subsonic and supersonic flows. If subsonic, the flow can
“sense” objects and flow smoothly around them. This is not possible in supersonic
flow, and this topic will be discussed further after the appropriate background has
been laid.

As you progress through the remainder of this book and analyze specific flow
situations, it will become increasingly evident that fluids behave quite differently
in the supersonic regime than they do in the more familiar subsonic flow regime.
Thus it will not be surprising to see Mach number become an important parameter.
The significance of T—s diagrams as a key to problem visualization should not be
overlooked.

Some of the most frequently used equations that were developed in this unit are
summarized below. Most are restricted to the steady one-dimensional flow of any
fluid, while others apply only to perfect gases. You should determine under what
conditions each may be used.

1. Sonic velocity (propagation speed of infinitesimal pressure pulses)

a E
@’ =g, (8_P> =g (4.5), (4.7)
P/ s P
Vv .
M= — (all at the same location) “4.11)
a
i ! (4.12)
sin u = — .
=M

2. Special relations for perfect gases

a* = yg.RT (4.9)
-1
ho=h (1 n VTM2> (4.17)
-1
T,=T<1+VTM2> (4.18)
-1 v/(y—=1
pi=p (1 + X 5 M2> 421
Swy _

dp,  ds, T\ ds
2 (1——>+—s+ 0 (4.23)

R T, R ' RT,
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P2 _ MR for Q=W =0 (4.28)
P11
PROBLEMS
4.1. Compute and compare sonic velocity in air, hydrogen, water, and mercury. Assume

4.2

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

normal room temperature and pressure.

At what temperature and pressure would carbon monoxide, water vapor, and helium
have the same speed of sound as standard air (288 K and 1 atm)?

Start with the relation for stagnation pressure that is valid for a perfect gas:

-1 y/(r=1)
pr=p(l+—y2 Mz)

Expand the right side in a binomial series and evaluate the result for small (but not zero)
Mach numbers. Show that your answer can be written as

pV?

p,=p+2 + HOT

c

Remember, the higher-order terms are negligible only for very small Mach numbers.
(See Problem 4.4.)

Measurement of airflow shows the static and stagnation pressures to be 30 and 32 psig,

respectively. (Note that these are gage pressures.) Assume that p,,p, = 14.7 psia and

the temperature is 120°F.

(a) Find the flow velocity using equation (4.21).

(b) Now assume that the air is incompressible and calculate the velocity using equation
(3.39).

(c) Repeat parts (a) and (b) for static and stagnation pressures of 30 and 80 psig,
respectively.

(d) Canyoureach any conclusions concerning when a gas may be treated as a constant-
density fluid?

If y = 1.2 and the fluid is a perfect gas, what Mach number will give a temperature
ratio of T'/T; = 0.909? What will the ratio of p/p; be for this flow?

Carbon dioxide with a temperature of 335 K and a pressure of 1.4 x 10° N/m? is flowing
with a velocity of 200 m/s.

(a) Determine the sonic velocity and Mach number.
(b) Determine the stagnation density.

The temperature of argon is 100°F, the pressure 42 psia, and the velocity 2264 ft/sec.
Calculate the Mach number and stagnation pressure.

Helium flows in a duct with a temperature of 50°C, a pressure of 2.0 bar abs., and a
total pressure of 5.3 bar abs. Determine the velocity in the duct.

An airplane flies 600 mph at an altitude of 16,500 ft, where the temperature is 0°F and
the pressure is 1124 psfa. What temperature and pressure might you expect on the nose
of the airplane?



4.10.

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.

PROBLEMS 101

Air flows at M = 1.35 and has a stagnation enthalpy of 4.5 x 10° J/kg. The stagnation
pressure is 3.8 x 10° N/m?. Determine the static conditions (pressure, temperature, and
velocity).

A large chamber contains a perfect gas under conditions py, 71, 1, and so on. The gas
is allowed to flow from the chamber (with ¢ = w; = 0). Show that the velocity cannot

be greater than
5 \!12
Vinax = a1 <—)
y—1

If the velocity is the maximum, what is the Mach number?

Air flows steadily in an adiabatic duct where no shaft work is involved. At one section,
the total pressure is 50 psia, and at another section, it is 67.3 psia. In which direction is
the fluid flowing, and what is the entropy change between these two sections?

Methane gas flows in an adiabatic, no-work system with negligible change in potential.
At one section p; = 14 bar abs., 71 = 500 K, and V| = 125 m/s. At a downstream
section M, = 0.8.

(a) Determine 75 and V.

(b) Find p, assuming that there are no friction losses.

(¢) What is the area ratio Ay/A;?

Air flows through a constant-area, insulated passage. Entering conditions are 73 =

520°R, p1 = 50 psia, and M; = 0.45. At a point downstream, the Mach number is
found to be unity.

(a) Solve for 7, and p;.

(b) What is the entropy change between these two sections?

(¢) Determine the wall frictional force if the duct is 1 ft in diameter.

Carbon dioxide flows in a horizontal adiabatic, no-work system. Pressure and temper-

ature at section 1 are 7 atm and 600 K. At a downstream section, py = 4 atm., T, =
550 K, and the Mach number is M, = 0.90.

(a) Compute the velocity at the upstream location.

(b) What is the entropy change?

(¢) Determine the area ratio Ay/Aj.

Oxygen with 7;; = 1000°R, p;; = 100 psia, and M; = 0.2 enters a device with a

cross-sectional area A; = 1 ft2 . There is no heat transfer, work transfer, or losses as
the gas passes through the device and expands to 14.7 psia.

(a) Compute p;, V|, and n1.

(b) Compute M;, T, V2, p2, and A,.

(¢) What force does the fluid exert on the device?

Consider steady, one-dimensional, constant-area, horizontal, isothermal flow of a per-

fect gas with no shaft work (Figure P4.17). The duct has a cross-sectional area A and
perimeter P. Let 1, be the shear stress at the wall.
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, |

Figure P4.17

(a) Apply momentum concepts [equation (3.45)] and show that

dx pV* _ pvVdVv
D. 28 &

(b) From the concept of continuity and the equation of state, show that

dp _dp _ av

b p Vv
(¢) Combine the results of parts (a) and (b) to show that

dp [ yM? ] fdx

o L2oM2-1)| D,

CHECKTEST

You should be able to complete this test without reference to material in the chapter.
4.1. (a) Define Mach number and Mach angle.
(b) Give an expression that represents sonic velocity in an arbitrary fluid.
(c) Give the relation used to compute sonic velocity in a perfect gas.

4.2. Consider the steady, one-dimensional flow of a perfect gas with heat transfer. The T—s
diagram (Figure CT4.2) shows both static and stagnation points at two locations in the
system. It is known that A = B.

(a) Is heat transferred into or out of the system?
(b) Is Mz > Ml, M2 = Ml,OI' Mz < Ml?

4.3. State whether each of the following statements is true or false.

(a) Changing the frame of reference (or superposition of a velocity onto an existing
flow) does not change the static enthalpy.

(b) Shock waves travel at sonic velocity through a medium.

(c) In general, one can say that flow losses will show up as a decrease in stagnation
enthalpy.

(d) The stagnation process is one of constant entropy.
(e) A Mach cone does not exist for subsonic flow.
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4.5.

4.6.

CHECK TEST 103

Process path

N

Figure CT4.2

Cite the conditions that are necessary for the stagnation temperature to remain constant
in a flow system.

For steady flow of a perfect gas, the continuity equation can be written as

m=f(p,M,T,y,A, R, g) = const
Determine the precise function.

Work Problem 4.14.



Chapter 5

Varying-Area
Adiabatic Flow

5.1 INTRODUCTION

Area changes, friction, and heat transfer are the most important factors that affect the
properties in a flow system. Although some situations may involve the simultaneous
effects of two or more of these factors, the majority of engineering problems are
such that only one of these factors becomes the dominant influence for any particular
device. Thus it is more than academic interest that leads to the separate study of each
of the above-mentioned effects. In this manner it is possible to consider only the
controlling factor and develop a simple solution that is within the realm of acceptable
engineering accuracy.

In this chapter we consider the general problem of varying-area flow under the
assumptions of no heat transfer (adiabatic) and no shaft work. We first consider the
flow of an arbitrary fluid without losses and determine how its properties are affected
by area changes. The case of a perfect gas is then considered and simple working
equations developed to aid in the solution of problems with or without flow losses.
The latter case (isentropic flow) lends itself to the construction of tables which are
used throughout the remainder of the book. The chapter closes with a brief discussion
of the various ways in which nozzle and diffuser performance can be represented.

5.2 OBJECTIVES

After completing this chapter successfully, you should be able to:

1. (Optional) Simplify the basic equations for continuity and energy to relate
differential changes in density, pressure, and velocity to the Mach number
and a differential change in area for steady, one-dimensional flow through a
varying-area passage with no losses.

105
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2. Show graphically how pressure, density, velocity, and area vary in steady,
one-dimensional, isentropic flow as the Mach number ranges from zero to
supersonic values.

3. Compare the function of a nozzle and a diffuser. Sketch physical devices that
perform as each for subsonic and supersonic flow.

4. (Optional) Derive the working equations for a perfect gas relating property
ratios between two points in adiabatic, no-work flow, as a function of the Mach
number (M), ratio of specific heats (y), and change in entropy (As).

5. Define the * reference condition and the properties associated with it (i.e., A*,
p*, T, p*,etc.).

6. Express the loss (As;) (between two points in the flow) as a function of
stagnation pressures (p,) or reference areas (A*). Under what conditions are
these relations true?

7. State and interpret the relation between stagnation pressure (p,) and reference
area (A*) for a process between two points in adiabatic no-work flow.

8. Explain how a converging nozzle performs with various receiver pressures. Do
the same for the isentropic performance of a converging—diverging nozzle.

9. State what is meant by the first and third critical modes of nozzle operation.
Given the arearatio of a converging—diverging nozzle, determine the operating
pressure ratios that cause operation at the first and third critical points.

10. With the aid of an h—s diagram, give a suitable definition for both nozzle
efficiency and diffuser performance.

11. Describe what is meant by a choked flow passage.

12. Demonstrate the ability to utilize the adiabatic and isentropic flow relations
and the isentropic table to solve typical flow problems.

5.3 GENERAL FLUID-NO LOSSES

We first consider the general behavior of an arbitrary fluid. To isolate the effects of
area change, we make the following assumptions:

Steady, one-dimensional flow

Adiabatic 3¢ =0,ds. =0
No shaft work Swy =0
Neglect potential dz=0

No losses ds; =0

Our objective will be to obtain relations that indicate the variation of fluid prop-
erties with area changes and Mach number. In this manner we can distinguish the
important differences between subsonic and supersonic behavior. We start with the
energy equation:
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dv?
5q = dw, +dh + — + = dz (2.53)
2g. 8c
But
8qg =dw; =0
and
dz=0
which leaves
dv?
0=dh+ (5.1
28
or
vdv
dh = — (5.2)
8¢
We now introduce the property relation
d
Tds =dh— L (1.41)
0

Since our flow situation has been assumed to be adiabatic (ds, = 0) and to contain
no losses (ds; = 0), it is also isentropic (ds = 0). Thus equation (1.41) becomes

d
dh =L (5.3)
P
We equate equations (5.2) and (5.3) to obtain
Vdv dp
8e P
or
d
av = -8 (5.4)
pV

We introduce this into equation (2.32) and the differential form of the continuity
equation becomes

do dA g.d
p_ dA_sdp _,

P A pV2

(5.5)
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Solve this for dp/p and show that

d V2 (d dA
-2 (%)

P & \p A

(5.6)

Recall the definition of sonic velocity:

a’ =g (a—p) (4.5)
ap /

Since our flow is isentropic, we may drop the subscript and change the partial
derivative to an ordinary derivative:
2 dp

@ =g (5.7)

This permits equation (5.7) to be rearranged to

a2

dp = —dp (5.8)
ge

Substituting this expression for dp into equation (5.6) yields

d V2 /d dA
L= <—p + —) (5.9)
0 a ) A
Introduce the definition of Mach number,
V2
M == 4.11)
a

and combine the terms in dp/p to obtain the following relation between density and
area changes:

d M? \ dA
7p=<1_M2>X (5.10)

If we now substitute equation (5.10) into the differential form of the continuity
equation (2.32), we can obtain a relation between velocity and area changes. Show
that

___<;>% 5.1D
7 1—M2) A ’

Now equation (5.4) can be divided by V to yield
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dv. gcdp

vV o pV2

(5.12)

If we equate (5.11) and (5.12), we can obtain a relation between pressure and area
changes. Show that

V2 1 dA
dp="2 “ (5.13)
g \1-M?) A

For convenience, we collect the three important relations that will be referred to
in the analysis that follows:

v? 1 dA
dp ="~ @ (5.13)
e \1-M2) A
dp M? dA
A R 5.10
P <1—M2> A 10
av 1 \dA S0
7 1-M2) A '

Let us consider what is happening as fluid flows through a variable-area duct.
For simplicity we shall assume that the pressure is always decreasing. Thus dp is
negative. From equation (5.13) you see thatif M < 1, dA must be negative, indicating
that the area is decreasing; whereas if M > 1, dA must be positive and the area is
increasing.

Now continue to assume that the pressure is decreasing. Knowing the area vari-
ation you can now consider equation (5.10). Fill in the following blanks with the
words increasing or decreasing: If M < 1 (and dA is ), then dp must be

If M > 1 (and dA is ), then dp must be .

Looking at equation (5.11) reveals that if M < 1 (and dA is ) then, dV
must be meaning that velocity is , whereas if M > 1 (and
dA is ), then dV must be and velocity is .

We summarize the above by saying that as the pressure decreases, the following
variations occur:

Subsonic Supersonic

M <1) M >1)
Area A Decreases Increases
Density P Decreases Decreases
Velocity Vv Increases Increases

A similar chart could easily be made for the situation where pressure increases, but it
is probably more convenient to express the above in an alternative graphical form, as
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Velocity
!
|
I
|
| Area
|
|
p.p, A,V ||
I Density
I (pressure similar)
|
|
}
\,
| AN
0 M<1 1.0 M>1

Mach number

Figure 5.1 Property variation with area change.

shown in Figure 5.1. The appropriate shape of these curves can easily be visualized
if one combines equations (5.10) and (5.11) to eliminate the term dA/A with the
following result:

dr _ —M? av (5.14)
P \%

From this equation we see that at low Mach numbers, density variations will be quite
small, whereas at high Mach numbers the density changes very rapidly. (Eventually,
as V becomes very large and p becomes very small, small density changes occur
once again.) This means that the density is nearly constant in the low subsonic regime
(dp =~ 0) and the velocity changes compensate for area changes. [See the differential
form of the continuity equation (2.32).] At a Mach number equal to unity, we reach
a situation where density changes and velocity changes compensate for one another
and thus no change in area is required (dA = 0). As we move on into the supersonic
area, the density decreases so rapidly that the accompanying velocity change cannot
accommodate the flow and thus the area must increase. We now recognize another
aspect of flow behavior which is exactly opposite in subsonic and supersonic flow.
Consider the operation of devices such as nozzles and diffusers.

A nozzle is a device that converts enthalpy (or pressure energy for the case of an
incompressible fluid) into kinetic energy. From Figure 5.1 we see that an increase
in velocity is accompanied by either an increase or decrease in area, depending on
the Mach number. Figure 5.2 shows what these devices look like in the subsonic and
supersonic flow regimes.

A diffuser is a device that converts kinetic energy into enthalpy (or pressure energy
for the case of incompressible fluids). Figure 5.3 shows what these devices look like
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M<1 M>1
—_— —_—
Velocity increasing Velocity increasing

(a) (b)

Figure 5.2 Nozzle configurations.

M<I1 M>1
—_— —
Velocity decreasing Velocity decreasing

() " (b)

Figure 5.3 Diffuser configurations.

in the subsonic and supersonic regimes. Thus we see that the same piece of equipment
can operate as either a nozzle or a diffuser, depending on the flow regime.

Notice that a device is called a nozzle or a diffuser because of what it does, not what
it looks like. Further consideration of Figures 5.1 and 5.2 leads to some interesting
conclusions. If one attached a converging section (see Figure 5.2a) to a high-pressure
supply, one could never attain a flow greater than Mach 1, regardless of the pressure
differential available. On the other hand, if we made a converging—diverging device
(combination of Figure 5.2a and b), we see a means of accelerating the fluid into
the supersonic regime, provided that the proper pressure differential exists. Specific
examples of these cases are given later in the chapter.

5.4 PERFECT GASES WITH LOSSES

Now that we understand the general effects of area change in a flow system, we will
develop some specific working equations for the case of a perfect gas. The term
working equations will be used throughout this book to indicate relations between
properties at arbitrary sections of a flow system written in terms of Mach numbers,
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Figure 5.4 Varying-area flow system.

specific heat ratio, and a loss indicator such as As;. An example of this for the system
shown in Figure 5.4 is

B f(My, My, y, As;) (5.15)

P1

We begin by feeding the following assumptions into our fundamental concepts of
state, continuity, and energy:

Steady one-dimensional flow
Adiabatic

No shaft work

Perfect gas

Neglect potential

State
We have the perfect gas equation of state:

p=pRT (1.13)
Continuity
m = pAV = const (2.30)
P1ALV] = p Ay Vy (5.16)
We first seek the area ratio
A V
L2 _Pn (5.17)
Ay ;W

We substitute for the densities using the equation of state (1.13) and for velocities
from the definition of Mach number (4.11):
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Ar (ﬂ) <E> Mia,  piThMia (5.18)
A RT, p2 ) Myay  pyTiMhas '

Introduce the expression for the sonic velocity of a perfect gas:

a=+/ygRT (4.10)

and show that equation (5.18) becomes

A2 _ pMy <E)1/2 (5.19)
A1 pMy \Th '

We must now find a means to express the pressure and temperature ratios in terms of
M, M, y, and As.

Energy
We start with

hi +q = hp + wy (3.19)
For an adiabatic, no-work process, this shows that
hiyp = hp (5.20)

However, we can go further than this since we know that for a perfect gas, enthalpy
is a function of temperature only. Thus

Tn=To (5.21)

Recall from Chapter 4 that we developed a general relationship between static and
stagnation temperatures for a perfect gas as

—1
T, =T <1 + ”TW) (4.18)
Hence equation (5.21) can be written as
y—1 ., i y—1
T (14 =M ) =1 (1+ =M, (5.22)

or

1+l =D/21m?
Ti 1+ = D214y

(5.23)
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which is the ratio desired for equation (5.19). Note that no subscripts have been put
on the specific heat ratio y, which means we are assuming that y; = y». This might
be questioned since the specific heats ¢, and ¢, are known to vary somewhat with
temperature. In Chapter 11 we explore real gas behavior and learn why these specific
heats vary and discover that their ratio (y) does not exhibit much change except
over large temperature ranges. Thus the assumption of constant y generally leads to
acceptable engineering accuracy.

Recall from Chapter 4 that we also developed a general relationship between static
and stagnation pressures for a perfect gas:

y—1 y/(y=1)
pt=p (1 + TMz) (4.21)
Furthermore, the stagnation pressure—energy equation was easily integrated for the

case of a perfect gas in adiabatic, no-work flow to yield

P2 _ gas/R (4.28)
Pr1

If we introduce equation (4.21) into (4.28), we have

pe _p (1 I - 1)/2]M22)” T _ (5.24)
p - pi \L+[(y — D/2IM}? - '

Rearrange this to obtain the ratio

/ty=1
no_ (1+[(y_1)/2]M22>y T e (525)

P2 1+ [(y — 1)/21M?

We now have the desired information to accomplish the original objective. Direct
substitution of equations (5.23) and (5.25) into (5.19) yields

A _ [(1 Gy - 1>/21M22>W‘” /] 9

A [\ + 1y — D/21M?
(1 1>/21M12>“2 (5.26)
My \1+[(y — 1)/21M; '
Show that this can be simplified to
A My <1 + 1y — 1)/2]M22)(””/ Y sk 527)
Al My \1+[(y —1/21M? .
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Note that to obtain this equation, we automatically discovered a number of other
working equations, which for convenience we summarize below.

T =Tp (5.21)
Pz _ p-as/R (4.28)
Pr1

T 14y = D/2IM? (5.23)
Ty 1+((y — 1)/21M,> '

P (1+1 = D22\
no (1 Tl - 1)/2]M;2> T fom 629

From equations (1.13), (5.23), and (5.25) you should also be able to show that

_ 2\ Vlr=D
P (1 +[(y — D/21M, ) o~ OS/R (5.28)

p1 - \1+[(y — 1)/21M,?

Example 5.1 Air flows in an adiabatic duct without friction. At one section the Mach number
is 1.5, and farther downstream it has increased to 2.8. Find the area ratio.
For a frictionless, adiabatic system, As = 0. We substitute directly into equation (5.27):

— 9 = (L4+1)/2(1.4—1)
Ay _ 1.5 [1 + [(1.4 —1)/2](2.8) ] (1) — 2.08

Al 28| 14[(1.4—1)/2](1.5)?2

This problem is very simple since both Mach numbers are known. The inverse
problem (given A;, A, and My, find M) is not so straightforward. We shall come
back to this in Section 5.6 after we develop a new concept.

5.5 THE * REFERENCE CONCEPT

In Section 3.5 the concept of a stagnation reference state was introduced, which by
the nature of its definition turned out to involve an isentropic process. Before going
any further with the working equations developed in Section 5.4, it will be convenient
to introduce another reference condition because, among other things, the stagnation
state is not a feasible reference when dealing with area changes. (Why?) We denote
this new reference state with a superscript * and define it as “that thermodynamic state
which would exist if the fluid reached a Mach number of unity by some particular
process”. The italicized phrase is significant, for there are many processes by which
we could reach Mach 1.0 from any given starting point, and they would each lead to a
different thermodynamic state. Every time we analyze a different flow phenomenon
we will be considering different types of processes, and thus we will be dealing with
a different * reference state.
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" 0
L \ 2, M = 0 (stagnation)

Actual process in
flow system

Figure 5.5 Isentropic * reference states.

We first consider a * reference state reached under reversible-adiabatic conditions
(i.e., by an isentropic process). Every point in the flow system has its own * reference
state, just as it has its own stagnation reference state. As an illustration, consider a
system that involves the flow of a perfect gas with no heat or work transfer. Figure 5.5
shows a T—s diagram indicating two points in such a flow system. Above each point
is shown its stagnation reference state, and we now add the isentropic * reference state
that is associated with each point. Not only is the stagnation line for the entire system
a horizontal line, but in this system all * reference points will lie on a horizontal line
(see the discussion in Section 4.6). Is the flow subsonic or supersonic in the system
depicted in Figure 5.5?

We now proceed to develop an extremely important relation. Keep in mind that *
reference states probably don’t exist in the system, but with appropriate area changes
they could exist, and as such they represent legitimate section locations to be used
with any of the equations that we developed earlier [such as equations (5.23), (5.25),
(5.27), etc.]. Specifically, let us consider

Ay M (1 — 1)/21M,2\ VR

Ay My \1+[(y — 1)/21M?
In this equation, points 1 and 2 represent any two points that could exist in a system

(subject to the same assumptions that led to the development of the equation). We
now apply equation (5.27) between points 1* and 2*. Thus

A]éAl* M]:}MI*EI
Ay= A My= M =1

and we have:
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AS L (Ll = 2\ T
AF 1T\ +[(y — /2112

or

A *
T2 = MR (5.29)

*
1

Before going further, it might be instructive to check this relation to see if it appears
reasonable. First, take the case of no losses where As = 0. Then equation (5.29) says
that A* = AJ*. Check Figure 5.5 for the case of Asj_, = 0. Under these conditions
the diagram collapses into a single isentropic line on which 1, is identical with 2, and
1* is the same point as 2*. Under this condition, it should be obvious that A * is the
same as A,".

Next, take the more general case where As;_, is nonzero. Assuming that these
points exist in a flow system, they must pass the same amount of fluid, or

m= p*AV* = p, A V,* (5.30)
Recall from Section 4.6 that since these state points are on the same horizontal line,
V= V* (5.31)

Similarly, we know that 7,* = T7,*, and from Figure 5.5 it is clear that p;* > p,*.
Thus from the equation of state, we can easily determine that

oy < pf (5.32)

Introduce equations (5.31) and (5.32) into (5.30) and show that for the case of
Asl_z > O,

AF > A (5.33)

which agrees with equation (5.29).
We have previously developed a relation between the stagnation pressures (which
involves the same assumptions as equation (5.29):

P2 _ g-as/R (4.28)
P

Check Figure 5.5 to convince yourself that this equation also appears to give reason-
able answers for the special case of As = 0 and for the general case of As > 0.
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We now multiply equation (5.29) by equation (4.28):

A_Z*@= As/R —As/R =1 5.34
AL _ ity (o 534

or

leAl* = PtZAz* (5.35)

This is a most important relation that is frequently the key to problem solutions in
adiabatic flow. Learn equation (5.35) and the conditions under which it applies.

5.6 ISENTROPIC TABLE

In Section 5.4 we considered the steady, one-dimensional flow of a perfect gas under
the conditions of no heat and work transfer and negligible potential changes. Looking
back over the working equations that were developed reveals that many of them do not
include the loss term (As;). In those where the loss term does appear, it takes the form
of a simple multiplicative factor such as ¢®*/R. This leads to the natural use of the
isentropic process as a standard for ideal performance with appropriate corrections
made to account for losses when necessary. In a number of cases, we find that some
actual processes are so efficient that they are very nearly isentropic and thus need no
corrections.
If we simplify equation (5.27) for an isentropic process, it becomes

_ 2\ (v+D/2(r=1)
A My (1 + Iy = 1)/2IM, ) (5.36)

Ay My \1+[(y — 1)/2IM?

This is easy to solve for the area ratio if both Mach numbers are known (see Example
5.1), but let’s consider a more typical problem. The physical situation is fixed (i.e.,
Aq and A, are known). The fluid (and thus y) is known, and the Mach number at one
location (say, M) is known. Our problem is to solve for the Mach number (M) at
the other location. Although this is not impossible, it is messy and a lot of work.

We can simplify the solution by the introduction of the * reference state. Let point
2 be an arbitrary point in the flow system, and let its isentropic * point be point 1.
Then

Ay = A M, = M (any value)
A= AT M, =1

and equation (5.36) becomes
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=fM.y) (5.37)

A _i<l+[(y_1)/2]M2>(V+1)/2(}’—1)

A* T M (y +1)/2
We see that A/A™* = f(M, y), and we can easily construct a table giving values of
A/A * versus M for a particular y. The problem posed earlier could then be solved
as follows:

Given: y, Ay, Ap, M, and isentropic flow.
Find: M,.

We approach the solution by formulating the ratio A,/A," in terms of known
quantities.
A2 A2 A 1

=2 i 5.38
AF T ALA] A* (5.38)

Given L { Evaluated by equation (5.29) and

equals 1.0 if flow is isentropic

A function of M; look
up in isentropic table

Thus A,/A,* can be calculated, and by entering the isentropic table with this value,
M, can be determined. A word of caution here! The value of A;/A," will be found
in two places in the table, as we are really solving equation (5.36), or the more
general case equation (5.27), which is a quadratic for M,. One value will be in the
subsonic region and the other in the supersonic regime. You should have no difficulty
determining which answer is correct when you consider the physical appearance of
the system together with the concepts developed in Section 5.3.

Note that the general problem with losses can also be solved by the same technique
as long as information is available concerning the loss. This could be given to us in the
formof A"/ A, pio/pi,or possibly as Asi_,. All three of these represent equivalent
ways of expressing the loss [through equations (4.28) and (5.29)].

We now realize that the key to simplified problem solution is to have available
a table of property ratios as a function of y and one Mach number only. These
are obtained by taking the equations developed in Section 5.4 and introducing a
reference state, either the * reference condition (reached by an isentropic process)
or the stagnation reference condition (reached by an isentropic process). We proceed
with equation (5.23):

T 1+ —1/2IM.

Ty 1+[(y — 1)/2IM, 629

Let point 2 be any arbitrary point in the system and let its stagnation point be point
1. Then
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=T M, = M (any value)
=T, M; =0

and equation (5.23) becomes

T
T, 1+ — D/2IM?

=fM,y) (5.39)

Equation (5.25) can be treated in a similar fashion. In this case we let 1 be the arbitrary
point and its stagnation point is taken as 2. Then

p1=7p M; = M (any value)
P2 = D M, =0

and when we remember that the stagnation process is isentropic, equation (5.25)
becomes

» 1 v/(r=1)
P <LHW—DMMJ oy

Equations (5.39) and (5.40) are not surprising, as we have developed these previously
by other methods [see equations (4.18) and (4.21)]. The tabulation of equation (5.40)
may be used to solve problems in the same manner as the area ratio. For example,
assume that we are

Given: y, p1, p2, M>, and As;_; and asked to
Find: M,.

To solve this problem, we seek the ratio p;/p;; in terms of known ratios:

PL_pppe (5.41)

P P2 Pr2 Pri

Given { Evaluated by equation (4.28)

as a function of As;_»

A function of M>; look
up in isentropic table

After calculating the value of p;/p;1, we enter the isentropic table and find M;. Note
that even though the flow from station 1 to 2 is not isentropic, the functions for p;/p;;
and p,/ pry are isentropic by definition; thus the isentropic table can be used to solve
this problem. The connection between the two points is made through p;»/ p;1, which
involves the entropy change.



5.6 ISENTROPIC TABLE 121

We could continue to develop other isentropic relations as functions of the Mach
number and y. Apply the previous techniques to equation (5.28) and show that

P 1 1/(y—1)
o (1 Tl — 1)/2]M2> ©-42)

Another interesting relationship is the product of equations (5.37) and (5.40):

Ap
Ve SfM,y) (5.43)
Pt

Determine what unique function of M and y is represented in equation (5.43). Since
A/A* and p/p, are isentropic by definition, we should not be surprised that their
product s listed in the isentropic table. But can these functions provide the connection
between two locations in a flow system with known losses?

Recall that

P2 _ gmoir (4.28)
P
and
AZ* As/R
A =/ (4.29)

Thus, for cases involving losses (As), changes in A* are exactly compensated for by
changes in p,. This is true for all steady, one-dimensional flows of a perfect gas in an
adiabatic no-work system. We shall see later that equation (5.43) provides the only
direct means of solving certain types of problems.

Values of these isentropic flow parameters have been calculated from equations
(5.37), (5.39), (5.40), and so on, and tabulated in Appendix G. To convince yourself
that there is nothing magical about this table, you might want to check some of the
numbers found in them opposite a particular Mach number. In fact, as an exercise in
programming a digital computer, you could work up your own set of tables for values
of y other than 1.4, which is the only one included in Appendix G (see Problem
5.24). In Section 5.10 we suggest alternatives to the use of the table. As you read the
following examples, look up the numbers in the isentropic table to convince yourself
that you know how to find them.

Example 5.2 You are now in a position to rework Example 5.1 with a minimum of calcula-
tion. Recall that M; = 1.5 and M, = 2.8.

Ay Ay AS A 1
2= L — (3.5001)(1) [ —== ) =298
A Ay Ar A "W\ 11762

The following information (and Figure E5.3) are common to Examples 5.3 through 5.5. We
are given the steady, one-dimensional flow of air (y = 1.4), which can be treated as a perfect
gas. Assume that Q = W, = 0 and negligible potential changes. A; = 2.0 ft> and A, = 5.0 ft>.
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Figure ES.3

Example 5.3 Given that M; = 1.0 and As;_, = 0. Find the possible values of M.
To determine conditions at section 2 in Figure E5.3, we establish the ratio

Ay Ay AL AP (5
== == (1.000)(1) =2.5
AF T A ARAF T 2 (1.000(1)
L Equals 1.0 since isentropic
From isentropic table at M = 1.0

From given physical configuration

Look up A/A * = 2.5 in the isentropic table and determine that M, = 0.24 or 2.44. We can’t

tell which Mach number exists without additional information.
Example 5.4 Given that M} = 0.5, p; = 4 bar, and As;_, = 0, find M, and p,.

Ay Ay AL AF (5
=22 =(2)1.3398)(1) =3.35
AF - ALAF Ay 2

Thus M, ~ 0.175.

(Why isn’t it 2.757)
P2 Pr2 D1

= P2 P2l — 0.9788)(1) (= ) ) =4.64]

= BB = 05D (g ) ) = 44

Example 5.5 Given: M|} = 1.5, T) =70°F, and As;_, =0,
Find: M, and T>.
Find Ay/AS)f =7 (Thus M, ~ 2.62.)

Once M, is known, we can find 7.

T To Th 1
= —= 2207 — 0.4214)(1) [ ——— ) (530) = 324°R
T Th T, ( ) )<0.6897>( )

Why is T;; = T;2? (Write an energy equation between 1 and 2.)

Example 5.6 Oxygen flows into an insulated device with the following initial conditions:
p1 = 20 psia, T} = 600°R, and V| = 2960 ft/sec. After a short distance the area has converged
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Figure ES.6

from 6 ft? to 2.5 ft> (Figure E5.6). You may assume steady, one-dimensional flow and a perfect
gas. (See the table in Appendix A for gas properties.)

(a) Find My, p;1, Ty1, and hyy.
(b) If there are losses such that As;_, = 0.005 Btu/1bm-°R, find M3, p,, and 7.

(a) First, we determine conditions at station 1.

ar = (ygeRTY? = [(1.4)(32.2)(48.3)(600)]"/% = 1143 ft/sec
Vi 2960

a; 1143
)43 1 .
=—p =|——)(20) =393
D11 o D1 (0.0509> (20) psia
T 1
Ty = —T), = | ———— ] (600) = 1405°R
AR P <o.4271> (600)

hi1 = ¢p T = (0.218)(1405) = 306 Btu/lbm

(b) For a perfect gas with ¢ = wy; = 0, T;; = T}» (from an energy equation), and also from
equation (5.29):

Al — o~ AS/R _ ,—(0.003)(TT8)/48.3 _ () 9006
Ay
Thus
A _ A AT (23) ) g688)(0.9226) = 11028
A ATAFAY 6 )T ’ o
From the isentropic table we find that M, =~ . Why is the use of the isentropic table

legitimate here when there are losses in the flow? Continue and compute p, and 7>.
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P2 = (P &~ 117 psia)
T, = (T, =~ 1017°R)

Could you find the velocity at section 2?

5.7 NOZZLE OPERATION

We will now start a discussion of nozzle operation and at the same time gain more
experience in use of the isentropic table. Two types of nozzles are considered: a
converging-only nozzle and a converging—diverging nozzle. We start by examining
the physical situation shown in Figure 5.6. A source of air at 100 psia and 600°R is
contained in a large tank where stagnation conditions prevail. Connected to the tank
is a converging-only nozzle and it exhausts into an extremely large receiver where the
pressure can be regulated. We can neglect frictional effects, as they are very small in
a converging section.

If the receiver pressure is set at 100 psia, no flow results. Once the receiver pressure
is lowered below 100 psia, air will flow from the supply tank. Since the supply tank
has a large cross section relative to the nozzle outlet area, the velocities in the tank
may be neglected. Thus 77 &~ T;; and p; = p;;. There is no shaft work and we
assume no heat transfer. We identify section 2 as the nozzle outlet.

Energy
hit + 4 = heo + ¥, (3.19)
hrl - ht2

and since we can treat this as a perfect gas,

Large chamber
of supply air

T, = 600°R
p; = 100 psia I Receiver
P, = variable

Figure 5.6 Converging-only nozzle.
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T =Tn

It is important to recognize that the receiver pressure is controlling the flow. The
velocity will increase and the pressure will decrease as we progress through the nozzle
until the pressure at the nozzle outlet equals that of the receiver. This will always be
true as long as the nozzle outlet can “sense” the receiver pressure. Can you think
of a situation where pressure pulses from the receiver could not be “felt” inside the
nozzle? (Recall Section 4.4.)

Let us assume that

Prec = 80.2 psia
Then

P2 = Drec = 80.2 psia

and

80.2
P2 _ PP (—) (1) = 0.802
D2 P P2 100

Note that p;; = p;» by equation (4.28) since we are neglecting friction.
From the isentropic table corresponding to p/p, = 0.802, we see that

T,
M, =0.57 and — =0.939
T

Thus
T, = <T122> T:» = (0.939)(600) = 563°R
1
ay = (1.4)(32.2)(53.3)(563)
a, = 1163 ft/sec
and

Va = Mhas = (0.57)(1163) = 663 ft/sec

Figure 5.7 shows this process on a T—s diagram as an isentropic expansion. If
the pressure in the receiver were lowered further, the air would expand to this lower
pressure and the Mach number and velocity would increase. Assume that the receiver
pressure is lowered to 52.83 psia. Show that

P2 05283

Pr2

and thus
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Figure 5.7 T—s diagram for converging-only nozzle.

M> =1.00 with  V, = 1096 ft/sec

Notice that the air velocity coming out of the nozzle is exactly sonic. If we now drop
the receiver pressure below this critical pressure (52.83 psia), the nozzle has no way
of adjusting to these conditions. Why not? Assume that the nozzle outlet pressure
could continue to drop along with the receiver. This would mean that p,/p,, <
0.5283, which corresponds to a supersonic velocity. We know that if the flow is to go
supersonic, the area must reach a minimum and then increase (see Section 5.3). Thus
for a converging-only nozzle, the flow is governed by the receiver pressure until sonic
velocity is reached at the nozzle outlet and further reduction of the receiver pressure
will have no effect on the flow conditions inside the nozzle. Under these conditions,
the nozzle is said to be choked and the nozzle outlet pressure remains at the critical
pressure. Expansion to the receiver pressure takes place outside the nozzle.

In reviewing this example you should realize that there is nothing magical about
areceiver pressure of 52.83 psia. The significant item is the ratio of the static to total
pressure at the exit plane, which for the case of no losses is the ratio of the receiver
pressure to the inlet pressure. With sonic velocity at the exit, this ratio is 0.5283.

The analysis above assumes that conditions within the supply tank remain con-
stant. One should realize that the choked flow rate can change if, for example, the
supply pressure or temperature is changed or the size of the throat (exit hole) is
changed. It is instructive to take an alternative view of this situation. You are asked
in Problem 5.9 to develop the following equation for isentropic flow:

—(y+D/2(y—1)
) (5.44a)

m -1 v&c\1/? pi
—=M(1+—M? (—)
A ( + 2 R JT,

Applying this equation to the outlet and considering choked flow, M = 1 and A = A*.
Then
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/T, choked

Prec. 1.0
P

Figure 5.8 Operation of a converging-only nozzle at various back pressures.

1/2
(ﬂ) B ﬂ B Vgc< 2 )(VH)/(VI) / P 5:448)
A) A | R \y+1 JT, ‘

For a given gas,

V4

no_ constant (5.44c¢)
A*

t
We now look at four distinct possibilities:

1. Forafixed T;, p;, and A* = nip, constant.

2. For only p; increasing = Mmax INCreases.
3. For only 7, increasing = Mimax decreases.
4. For only A* increasing = Mmax iNCreases.

Figure 5.8 shows this in yet another way.

Converging-Diverging Nozzle

Now let us examine a similar situation but with a converging—diverging nozzle (some-
times called a DeLaval nozzle), shown in Figures 5.9 and 5.10. We identify the throat
(or section of minimum area) as 2 and the exit section as 3. The distinguishing phys-
ical characteristic of this type of nozzle is the area ratio, meaning the ratio of the
exit area to the throat area. Assume this to be A3/A, = 2.494. Keep in mind that
the objective of making a converging—diverging nozzle is to obtain supersonic flow.
Let us first examine the design operating condition for this nozzle. If the nozzle is to
operate as desired, we know (see Section 5.3) that the flow will be subsonic from 1
to 2, sonic at 2, and supersonic from 2 to 3.
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Roll control nozzle
using turbine exhaust

Regenerative cooled
thrust chamber with
nozzle throat

* Gimbal actuator

Fuel turbopump <

Ablative lined bell-chaped

Four leg .
nozzle extension

structural
support

Oxidizer
valve

Main fuel
valve

turbopump
High pressure T

oxygen line Oxygen tank

pressurization ~ Turbine

heat exchanger ~ exhaust nozzle

Figure 5.9 Typical converging—diverging nozzle. (Courtesy of the Boeing Company, Rocket-
dyne Propulsion and Power.)

Large chamber
of supply air

= ° I
Tl 600 R. | Receiver
py = 100 psia _— I P, = variable
V,=0 |
1 I
|
|

@ A4lA, = 2.494

Figure 5.10 Converging—diverging nozzle.

To discover the conditions that exist at the exit (under design operation), we seek
the ratio A3/A;":

Az Az Ay AY

AT A A AY

= (2.494)(1)(1) = 2.494

Note that A, = A," since M, = 1, and A," = A;" by equation (5.29), as we are still
assuming isentropic operation. We look for A/A * = 2.494 in the supersonic section
of the isentropic table and see that
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D3 T;
My—=244, 2 _00643, and -2 —0.4565
D3 T3
Thus
py= 22PB L (0.0643)(1)(100) = 6.43 psia
P3 Pr1

and to operate the nozzle at this design condition the receiver pressure must be at
6.43 psia. The pressure variation through the nozzle for this case is shown as curve
“a” in Figure 5.11. This mode is sometimes referred to as third critical. From the
temperature ratio 73/ T;3 we can easily compute 73, a3, and V3 by the procedure shown
previously.

One can also find A/A * = 2.494 in the subsonic section of the isentropic table.
(Recall that these two answers come from the solution of a quadratic equation.) For
this case

T
M; =024, 2 _09607 2 =0.9886
D3 3
Thus
py = L2P3 (0.9607)(1)(100) = 96.07 psia
Pr3 Pr1

and to operate at this condition the receiver pressure must be at 96.07 psia. With this
receiver pressure the flow is subsonic from 1 to 2, sonic at 2, and subsonic again from

All subsonic

\

L

Venturi regime

«— First critical
subsonic exhaust

aandb/

N\

Non-isetorpic
regime

/

a

Pressure

Sonic —

velocity

g

-«— Third critical

| (design operation)

Inlet Throat Exit  gupersonic exhaust
Position in Nozzle

Figure 5.11 Pressure variation through converging—diverging nozzle.
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2 to 3. The device is nowhere near its design condition and is really operating as a
venturi tube; that is, the converging section is operating as a nozzle and the diverging
section is operating as a diffuser. The pressure variation through the nozzle for this
case is shown as curve “b” in Figure 5.11. This mode of operation is frequently called
first critical.

Note that at both the first and third critical points, the flow variations are identical
from the inlet to the throat. Once the receiver pressure has been lowered to 96.07 psia,
Mach 1.0 exists in the throat and the device is said to be choked. Further lowering
of the receiver pressure will not change the flow rate. Again, realize that it is not the
pressure in the receiver by itself but rather the receiver pressure relative to the inlet
pressure that determines the mode of operation.

Example 5.7 A converging—diverging nozzle with an area ratio of 3.0 exhausts into a receiver
where the pressure is 1 bar. The nozzle is supplied by air at 22°C from a large chamber. At
what pressure should the air in the chamber be for the nozzle to operate at its design condition
(third critical point)? What will the outlet velocity be?

With reference to Figure 5.10, A3/A, = 3.0:

A A3 Ay A
AF T Ay ASAY

= 3B.0M(1)=3.0

From the isentropic table:

T.
My =264 P _o00a71 2 =04177
P13 T3
Pl D3 1 5 5 2
=, =P0P8 ) —— ) (1 x 105 =21.2 x 10° N/

P1L = pr1 7 ()(0.0471>( x 10”) x m

T,
T3 = 2287, = 0.4177)(1)(22 + 273) = 123.2K

Tz3 Ttl

V3 = Msaz = (2.64) [(1.4)(1)(287)(123.2)]"/% = 587 m/s

We have discussed only two specific operating conditions, and one might ask what
happens at other receiver pressures. We can state that the first and third critical points
represent the only operating conditions that satisfy the following criteria:

1. Mach 1 in the throat
2. Isentropic flow throughout the nozzle
3. Nozzle exit pressure equal to receiver pressure

With receiver pressures above the first critical, the nozzle operates as a venturi and
we never reach sonic velocity in the throat. An example of this mode of operation is
shown as curve “c” in Figure 5.11. The nozzle is no longer choked and the flow rate
is less than the maximum. Conditions at the exit can be determined by the procedure
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shown previously for the converging-only nozzle. Then properties in the throat can
be found if desired.

Operation between the first and third critical points is not isentropic. We shall learn
later that under these conditions shocks will occur in either the diverging portion of
the nozzle or after the exit. If the receiver pressure is below the third critical point,
the nozzle operates internally as though it were at the design condition but expansion
waves occur outside the nozzle. These operating modes will be discussed in detail as
soon as the appropriate background has been developed.

5.8 NOZZLE PERFORMANCE

We have seen that the isentropic operating conditions are very easy to determine.
Friction losses can then be taken into account by one of several methods. Direct in-
formation on the entropy change could be given, although this is usually not available.
Sometimes equivalent information is provided in the form of the stagnation pressure
ratio. Normally, however, nozzle performance is indicated by an efficiency parameter,
which is defined as follows:

__actual change in kinetic energy

" ideal change in kinetic energy

or

_ A KEactual

= (5.45)
AKEjgeal

T

Since most nozzles involve negligible heat transfer (per unit mass of fluid flowing),
we have from

ho +4 = ho + ¥ (3.19)
hiy = hp (5.46)
Thus
v,? V,?
hy+ 1 =hy + 2 (5.47a)
2g€ 2g¢
or
\% 2 _ V 2
hy—hy = 2 —1 (5.47b)
28,

Therefore, one normally sees the nozzle efficiency expressed as
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Figure 5.12 h—s diagram for a nozzle with losses.

Ahdctual
Ny = ——— (5.48)
Ahigeal
With reference to Figure 5.12, this becomes
hi —hy
= — 5.49
n I o, (5.49)

Since nozzle outlet velocities are quite large (relative to the velocity at the inlet),
one can normally neglect the inlet velocity with little error. This is the case shown
in Figure 5.12. Also note that the ideal process is assumed to take place down to
the actual available receiver pressure. This definition of nozzle efficiency and its
application appear quite reasonable since a nozzle is subjected to fixed (inlet and
outlet) operating pressures and its purpose is to produce kinetic energy. The question
is how well it does this, and 7, not only answers the question very quickly but permits
a rapid determination of the actual outlet state.

Example 5.8 Air at 800°R and 80 psia feeds a converging-only nozzle having an efficiency
of 96%. The receiver pressure is 50 psia. What is the actual nozzle outlet temperature?

Note that since prec/ pinlet = 50/80 = 0.625 > 0.528, the nozzle will not be choked, flow
will be subsonic at the exit, and py = pre. (see Figure 5.12).

S 50
P _ Pas P _ (—) (1) = 0.625
Dr2s Pt1 Dras 80

From table,

T

My ~0.85 and = 0.8737

12s
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T2s TIZS o
Ty = ——T;1 = (0.8737)(1)(800) = 699°R
TIZS Trl
T —T; —T;
e A=l ge 800-D
T\ — T, 800 — 699
T, = 703°R

Can you find the actual outlet velocity?

Another method of expressing nozzle performance is with a velocity coefficient,
which is defined as

__ actual outlet velocity

v = - (5.50)
ideal outlet velocity
Sometimes a discharge coefficient is used and is defined as
actual mass flow rate
= (5.51)

4= -
ideal mass flow rate

5.9 DIFFUSER PERFORMANCE

Although the common use of nozzle efficiency makes this parameter well understood
by all engineers, there is no single parameter that is universally employed for dif-
fusers. Nearly a dozen criteria have been suggested to indicate diffuser performance
(see p. 392, Vol. 1 of Ref 25). Two or three of these are the most popular, but unfor-
tunately, even these are sometimes defined differently or called by different names.
The following discussion refers to the i—s diagram shown in Figure 5.13.

Most of the propulsion industry uses the fotal-pressure recovery factor as a mea-
sure of diffuser performance. With reference to Figure 5.13, it is defined as

n, = 22 (5.52)

This function is directly related to the arearatio A,*/A," or the entropy change As;_5,
which we have previously shown to be equivalent loss indicators. As we shall see
in Chapter 12, for propulsion applications this is usually referred to the free-stream
conditions rather than the diffuser inlet.

For a definition of diffuser efficiency analogous to that of a nozzle, we recall that
the function of a diffuser is to convert kinetic energy into pressure energy; thus it
is logical to compare the ideal and actual processes between the same two enthalpy
levels that represent the same kinetic energy change. Therefore, a suitable definition
of diffuser efficiency is
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Figure 5.13 h—s diagram for a diffuser with losses.

_ a%ctual pressure r.ise (5.53)
ideal pressure rise
or from Figure 5.13,
) —
P2s — P1

You are again warned to be extremely cautious in accepting any performance figure
for a diffuser without also obtaining a precise definition of what is meant by the
criterion.

Example 5.9 A steady flow of air at 650°R and 30 psia enters a diffuser with a Mach
number of 0.8. The total-pressure recovery factor n, = 0.95. Determine the static pressure
and temperature at the exit if M = 0.15 at that section.

With reference to Figure 5.13,

P2 Pr2 Pr1 .
= —=——p; = (0.9844)(0.95) <—) (30) = 42.8 psia
P a7 0.6560 p
T Tn Ty
T = ———T; = (0.9955)(1) | ——— ) (650) = 730°R
2= o T = 09955 )(0'8865>( )
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5.10 WHEN y IS NOT EQUALTO 1.4

In this section, as in the next few chapters, we present graphical information on one or
more key parameter ratios as a function of the Mach number. This is done for various
ratios of the specific heats (y = 1.13, 1.4, and 1.67) to show the overall trends. Also,
within a certain range of Mach numbers, the tabulations in Appendix G for air at
normal temperature and pressure (y = 1.4) which represent the middle of the range
turn out to be satisfactory for other values of y.

Figure 5.14 shows curves for p/p,, T/T;, and A/A* in the interval 0.2 < M <5.
Actually, compressible flow manifests itself in the range M > 0.3. Below this range
we can treat flows as constant density (see Section 3.7 and Problem 4.3). Moreover,
we have deliberately chosen to remain below the hypersonic range, which is generally
regarded to be the region M > 5. So the interval chosen will be representative of many
situations encountered in compressible flow. The curves in Figure 5.14 clearly show
the important trends.

(a) As can be seen from Figure 5.14a, p/p; is the least sensitive (of the three
ratios plotted) to variations of y. Below M =~ 2.5 the pressure ratio is well
represented for any y by the values tabulated in Appendix G.

(b) Figure 5.14b shows that T/T, is more sensitive than the pressure ratio to
variations of y. But it shows relative insensitivity below M =~ 0.8 so that
in this range the values tabulated in Appendix G could be used for any y with
little error.

(c) The same can be said about A/A*, as shown in Figure 5.14¢, which turns out
to be relatively insensitive to variations in y below M ~ 1.5.

In summary, the tables in Appendix G can be used for estimates (within £5%) for
almost any value of y in the Mach number ranges identified above. Strictly speaking,
these curves are representative only for cases where y variations are negligible within
the flow. However, they offer hints as to what magnitude of changes are to be expected
in other cases. Flows where y variations are not negligible within the flow are treated
in Chapter 11.

5.11 (OPTIONAL) BEYOND THE TABLES
Tables in gas dynamics are extremely useful but they have limitations, such as:

1. They do not show trends or the “big picture.”

2. There is almost always the need for interpolation.
3. They display only one or at most a few values of y.
4. They do not necessarily have the required accuracy.
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N

/

plp; 0.01
y=1.67
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Figure 5.14 (a) Stagnation pressure ratio versus Mach number, (b) Stagnation temperature
ratio versus Mach number, and (c) A/A* area ratio versus Mach number for various values
of y.
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Moreover, modern digital computers have made significant inroads in the working
of problems, particularly when high-accuracy results and/or graphs are required.
Simply put, the computer can be programmed to do the hard (and the easy) numerical
calculations. In this book we have deliberately avoided integrating any gas dynamics
software (some of which is commercially available) into the text material, preferring
to present computer work as an adjunct to individual calculations. One reason is that
we want you to spend your time learning about the wonderful world of gas dynamics
and not on how to manage the programming. Another reason is that both computers
and packaged software evolve too quickly, and therefore the attention that must be
paid just to use any particular software is soon wasted.

Once you have mastered the basics, however, we feel that it is appropriate to
discuss how things might be done with computers (and this could include handheld
programmable calculators). In this book we discuss how the computer utility MAPLE
can be of help in solving problems in gas dynamics. MAPLE is a powerful computer
environment for doing symbolic, numerical, and graphical work. It is the product of
Waterloo Maple, Inc., and the most recent version, MAPLE 7, was copyrighted in
2001. MAPLE is used routinely in many undergraduate engineering programs in the
United States.

Other software packages are also popular in engineering schools. One in particu-
lar is MATLAB, which can do things equivalent to those handled by MAPLE. MAT-
LAB’s real forte is in manipulating linear equations and in constructing tables. But we
have chosen MAPLE because it can manipulate equations symbolically and because
of its superior graphics. In our view, this makes MAPLE somewhat more appropriate.

We will present some simple examples to show how MAPLE can be used. The ex-
perienced programmer can go much beyond these exercises. This section is optional
because we want you to concentrate on the learning of gas dynamics and not spend
extra time trying to demystify the computer approach. We focus on an example in
Section 5.6, but the techniques must be understood to apply in general.

Example 5.10 In Example 5.6(a) the calculations can be done from the formulas or by using
the tables for p,; and T;;. In part (b), however, direct calculation of M, given A,/A;* is more
difficult because it involves equation (5.37), which cannot be solved explicitly for M.
2\ (HD/2(r=1)
4 L(Lebar -
(r+1D/2

If we were given M», it would be simple to compute Ay/A".

But we are given A>/A," and we want to find M>.

This is a problem where MAPLE can be useful because a built-in solver routine handles
this type of problem easily.

First, we define some symbols: Let

g = y, aparameter (the ratio of the specific heats)
X = the independent variable (which in this case is M)

Y = the dependent variable (which in this case is A»/A,")
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We need to introduce an index “m” to distinguish between subsonic and supersonic flow.

{ 1 for subsonic flow

10 for supersonic flow.
Shown below is a copy of the precise MAPLE worksheet:

[>g := 1.4: Y := 1.1028: m := 10:
> fsolve(Y = (((1+(g-1)*(X"2)/2)/((g+1)/2)))"((g+l)/(2*(g-1)))/
X, X, 1..m);
1.377333281

which is the desired answer.

Here we discuss details of the MAPLE solution. If you are familiar with these,
skip to the next paragraph. We must assume that the numerical value outputted is X
because that is what we asked for in the executable statement with “fsolve( ),” which
terminates in a semicolon. Statements terminated in a colon are also executed but no
return is asked for.

Example 5.11 We continue with this problem, as this is a good opportunity to show how
MAPLE can help you avoid interpolation. If you are on the same worksheet, MAPLE re-
members the values of g, Y, and X. We are now looking for the ratio of static to stagnation
temperature, which is given the symbol Z. This ratio comes from equation (5.39):

T 1

T i - name T 6

Shown below are the precise inputs and program that you use in the computer.

1.3773:
> z 1/7(1 + (g-1)*(X"2)/2);
Z := 7249575776

[> X :

Now we can calculate the static temperature by the usual method.

T T
T = =2 227, = (0.725)(1)(1405) = 1019°R
T Ty

The static pressure (p2) can be found by a similar procedure.

5.12 SUMMARY

We analyzed a general varying-area configuration and found that properties vary in a
radically different manner depending on whether the flow is subsonic or supersonic.
The case of a perfect gas enabled the development of simple working equations for
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flow analysis. We then introduced the concept of a * reference state. The combination
of the * and the stagnation reference states led to the development of the isentropic
table, which greatly aids problem solution. Deviations from isentropic flow can be
handled by appropriate loss factors or efficiency criteria.

A large number of useful equations were developed; however, most of these are of
the type that need not be memorized. Equations (5.10), (5.11), and (5.13) were used
for the general analysis of varying-area flow, and these are summarized in the middle
of Section 5.3. The working equations that apply to a perfect gas are summarized
at the end of Section 5.4 and are (4.28), (5.21), (5.23), (5.25), (5.27), and (5.28).
Equations used as a basis for the isentropic table are numbered (5.37), (5.39), (5.40),
(5.42), and (5.43) and are located in Section 5.6.

Those equations that are most frequently used are summarized below. You should
be familiar with the conditions under which each may be used. Go back and review
the equations listed in previous summaries, particularly those in Chapter 4.

1. For steady one-dimensional flow of a perfect gas when Q = W =0

P _ gmtvr (4.28)
P
A *
A _ gauir (5.29)
Al

prlAl* = P12A2* (5.35)

2. Nozzle performance.
Nozzle efficiency (between same pressures):

_ AKEqcmal o hy — hy

= = 5.45), (5.49
AKEigear 1 — ho (5:49). (5-49)

Tn

3. Diffuser performance.
Total-pressure recovery factor:

n, =22 (5.52)

Pr1

or diffuser efficiency (between the same enthalpies):

tual i -
_ a%c ual pressure 1T1se _ - (5.53). (5.54)
ideal pressure rise P2 — P1

PROBLEMS

5.1. The following information is common to each of parts (a) and (b). Nitrogen flows
through a diverging section with A; = 1.5 ft> and A, = 4.5 ft> . You may assume
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5.2.

5.3.

54.

5.5.

5.6.

5.7.

5.8.

VARYING-AREA ADIABATIC FLOW

steady, one- dimensional flow, Q = W, = 0, negligible potential changes, and no
losses.

(a) If M; = 0.7 and p; = 70 psia, find M, and p;.
(b) If My = 1.7 and T\ = 95°F, find M, and 7.
Air enters a converging section where A; = 0.50 m”. At a downstream section A, =

0.25 m?, M, = 1.0, and As;_, = 0. It is known that p, > p;. Find the initial Mach
number (M) and the temperature ratio (7>/T}).

Oxygen flows into an insulated device with initial conditions as follows: p; = 30 psia,
T, = 750°R, and V| = 639 ft/sec. The area changes from A} = 6 f2 to Ay = 5 ft
(a) Compute M), p;, and Ty;.

(b) Is this device a nozzle or diffuser?

(¢) Determine M3, p,, and T, if there are no losses.

Air flows with T} =250 K, p; = 3 bar abs., p;; = 3.4 bar abs., and the cross-sectional

area A; = 0.40 m2. The flow is isentropic to a point where A, = 0.30 m?2. Determine
the temperature at section 2.

The following information is known about the steady flow of air through an adiabatic
system:
At section 1, 71 = 556°R, p;, = 28.0 psia
At section 2, T, = 70°F, T2 = 109°F, p,, = 18 psia
(a) Find M, V;, and p;,.
(b) Determine M,, Vi, and p;;.
(c) Compute the arearatio Ay/A;.
(d) Sketch a physical diagram of the system along with a 7—s diagram.
Assuming the flow of a perfect gas in an adiabatic, no-work system, show that sonic

velocity corresponding to the stagnation conditions (a;) is related to sonic velocity
where the Mach number is unity (a*) by the following equation:

a* 2 \'?

a (V + 1)
Carbon monoxide flows through an adiabatic system. M| = 4.0 and p;; = 45 psia. At
a point downstream, M, = 1.8 and p, = 7.0 psia.

(a) Are there losses in this system? If so, compute As.
(b) Determine the ratio of A,/A;.

Two venturi meters are installed in a 30-cm-diameter duct that is insulated (Figure
P5.8). The conditions are such that sonic flow exists at each throat (i.e., M| = My =
1.0). Although each venturi is isentropic, the connecting duct has friction and hence
losses exist between sections 2 and 3. p; = 3 bar abs. and ps = 2.5 bar abs. If the
diameter at section 1 is 15 cm and the fluid is air:

(a) Compute As for the connecting duct.
(b) Find the diameter at section 4.



5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

PROBLEMS 141

Figure P5.8

Starting with the flow rate as from equation (2.30), derive the following relation:

—(+D/2(y=1) (&)1/2 i

R VT

A smooth 3-in.-diameter hole is punched into the side of a large chamber where oxygen
is stored at 500°R and 150 psia. Assume frictionless flow.

% =M (1+[(y - 1)/2IM?)

(a) Compute the initial mass flow rate from the chamber if the surrounding pressure is
15.0 psia.

(b) What is the flow rate if the pressure of the surroundings is lowered to zero?
(¢) What is the flow rate if the chamber pressure is raised to 300 psia?

Nitrogen is stored in a large chamber under conditions of 450 K and 1.5 x 10° N/m?.
The gas leaves the chamber through a convergent-only nozzle whose outlet area is 30
cm?. The ambient room pressure is 1 x 10° N/m? and there are no losses.

(a) What is the velocity of the nitrogen at the nozzle exit?
(b) What is the mass flow rate?
(¢) What is the maximum flow rate that could be obtained by lowering the ambient

pressure?

A converging-only nozzle has an efficiency of 96%. Air enters with negligible velocity
at a pressure of 150 psia and a temperature of 750°R. The receiver pressure is 100 psia.
What are the actual outlet temperature, Mach number, and velocity?

A large chamber contains air at 80 psia and 600°R. The air enters a converging—

diverging nozzle which has an area ratio (exit to throat) of 3.0.

(a) What pressure must exist in the receiver for the nozzle to operate at its first critical
point?

(b) What should the receiver pressure be for third critical (design point) operation?

(c¢) If operating at its third critical point, what are the density and velocity of the air at
the nozzle exit plane?

Air enters a convergent—divergent nozzle at 20 bar abs. and 40°C. At the end of the
nozzle the pressure is 2.0 bar abs. Assume a frictionless adiabatic process. The throat
area is 20 cm?.

(a) What is the area at the nozzle exit?
(b) What is the mass flow rate in kg/s?
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5.15.

5.16.

5.17.

5.18.

5.19.
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A converging—diverging nozzle is designed to operate with an exit Mach number of
M = 2.25. Itis fed by a large chamber of oxygen at 15.0 psia and 600°R and exhausts
into the room at 14.7 psia. Assuming the losses to be negligible, compute the velocity
in the nozzle throat.

A converging—diverging nozzle (Figure P5.16) discharges air into a receiver where the
static pressure is 15 psia. A 1-ft2 duct feeds the nozzle with air at 100 psia, 800°R, and a
velocity such that the Mach number M; = 0.3. The exit area is such that the pressure at
the nozzle exit exactly matches the receiver pressure. Assume steady, one-dimensional
flow, perfect gas, and so on. The nozzle is adiabatic and there are no losses.

(a) Calculate the flow rate.

(b) Determine the throat area.

(¢) Calculate the exit area.

=
1]

o

W

Prec = 15 psia
A, =101t

1

>

G
@
@_

T, = 800°R # T,
p, = 100 psia #pﬂ

Figure P5.16

Ten kilograms per second of air is flowing in an adiabatic system. At one section the
pressure is 2.0 x 10° N/m?, the temperature is 650°C, and the area is 50 cm? At a
downstream section M, = 1.2.

(a) Sketch the general shape of the system.

(b) Find A, if the flow is frictionless.

(c) Find A, if there is an entropy change between these two sections of 42 J/kg-K.

Carbon monoxide is expanded adiabatically from 100 psia, 540°F and negligible ve-

locity through a converging—diverging nozzle to a pressure of 20 psia.

(a) What is the ideal exit Mach number?

(b) If the actual exit Mach number is found to be M = 1.6, what is the nozzle effi-
ciency?

(c) What is the entropy change for the flow?

(d) Draw a T—s diagram showing the ideal and actual processes. Indicate pertinent
temperatures, pressures, etc.

Air enters a converging—diverging nozzle with 7y = 22°C, p; = 10 bar abs., and V; ~
0. The exit Mach number is 2.0, the exit area is 0.25 m?, and the nozzle efficiency is
0.95.

(a) What are the actual exit values of 7', p, and p,?
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(b) What is the ideal exit Mach number?

(c) Assume that all the losses occur in the diverging portion of the nozzle and compute
the throat area.

(d) What is the mass flow rate?
A diffuser receives air at S00°R, 18 psia, and a velocity of 750 ft/sec. The diffuser has an

efficiency of 90% [as defined by equation (5.54)] and discharges the air with a velocity
of 150 ft/sec.

(a) What is the pressure of the discharge air?

(b) What is the total-pressure recovery factor as given by equation (5.52)?

(¢) Determine the area ratio of the diffuser.

Consider the steady, one-dimensional flow of a perfect gas through a horizontal system

with no shaft work. No frictional losses are involved, but area changes and heat transfer
effects provide a flow at constant temperature.

(a) Start with the pressure-energy equation and develop
P2 _ o(m2-m,?)
P1

P2 _ /(212 (1 Tl - 1)/2]M23>y/(y—1)
P 1+ [(y — D/2IM}?

(b) From the continuity equation show that

ﬂ — &e(ym(Mf—Mzz)
Ay M,

(¢) By letting M; be any Mach number and M, = 1.0, write the expression for A/A*.
Show that the section of minimum area occurs at M = 1/, /y.

Consider the steady, one-dimensional flow of a perfect gas through a horizontal system
with no heat transfer or shaft work. Friction effects are present, but area changes cause
the flow to be at a constant Mach number.

(a) Recall the arguments of Section 4.6 and determine what other properties remain
constant in this flow.

(b) Apply the concepts of continuity and momentum [equation (3.63)] to show that

M2
D2—D1=f 14

(x2 —x1)

You may assume a circular duct and a constant friction factor.

Assume that a supersonic nozzle operating isentropically delivers air at an exit Mach
number of 2.8. The entrance conditions are 180 psia, 1000°R, and near-zero Mach
number.

(a) Find the area ratio A3/A; and the mass flow rate per unit throat area.
(b) What are the receiver pressure and temperature?

(c¢) If the entire diverging portion of the nozzle were suddenly to detach, what would
the Mach number and 71/ A be at the new outlet?
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5.24. Write a computer program and construct a table of isentropic flow parameters for
y # 1.4. (Useful values might be y = 1.2, 1.3, or 1.67.) Use the following headings:
M, p/p:,T/Ti, p/pi, AJ/A*, and pA/p; A *. (Hint: Use MATLAB).

CHECKTEST
You should be able to complete this test without reference to material in the chapter.

5.1. Define the * reference condition.

5.2. In adiabatic, no-work flow, the losses can be expressed by three different parameters.
List these parameters and show how they are related to one another.

5.3. In the T—s diagram (Figure CT5.3), point 1 represents a stagnation condition. Pro-
ceeding isentropically from 1, the flow reaches a Mach number of unity at 1*. Point
2 represents another stagnation condition in the same flow system. Assuming that the
fluid is a perfect gas, locate the corresponding isentropic 2* and prove that 7, * is either
greater than, equal to, or less than T *.

20

——————0

N

Figure CT5.3

5.4. A supersonic nozzle is fed by a large chamber and produces Mach 3.0 at the exit (Figure
CT5.4). Sketch curves (to no particular scale) that show how properties vary through
the nozzle as the Mach number increases from zero to 3.0.

AN
S
=~

| J
0 1.0 3.0 0 1.0 3.0 0 1.0 3.0

M — M— M —>

Figure CT5.4

5.5. Give a suitable definition for nozzle efficiency in terms of enthalpies. Sketch an h—s
diagram to identify your state points.
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5.6. Air flows steadily with no losses through a converging—diverging nozzle with an area
ratio of 1.50. Conditions in the supply chamber are 7 = 500°R and p = 150 psia.

(a) To choke the flow, to what pressure must the receiver be lowered?

(b) If the nozzle is choked, determine the density and velocity at the throat.

(c¢) If the receiver is at the pressure determined in part (a) and the diverging portion of
the nozzle is removed, what will the exit Mach number be?

5.7. For steady, one-dimensional flow of a perfect gas in an adiabatic, no-work system,
derive the working relation between the temperatures at two locations:

T, .
— = f(M, M2, y)
T

5.8. Work problem 5.20.



Chapter 6

Standing
Normal Shocks

6.1 INTRODUCTION

Up to this point we have considered only continuous flows, flow systems in which
state changes occur continuously and thus whose processes can easily be identified
and plotted. Recall from Section 4.3 that infinitesimal pressure disturbances are called
sound waves and these travel at a characteristic velocity that is determined by the
medium and its thermodynamic state. In Chapters 6 and 7 we turn our attention
to some finite pressure disturbances which are frequently encountered. Although
incorporating large changes in fluid properties, the thickness of these disturbances
is extremely small. Typical thicknesses are on the order of a few mean free molecular
paths and thus they appear as discontinuities in the flow and are called shock waves.

Due to the complex interactions involved, analysis of the changes within a shock
wave is beyond the scope of this book. Thus we deal only with the properties that
exist on each side of the discontinuity. We first consider a standing normal shock, a
stationary wave front that is perpendicular to the direction of flow. We will discover
that this phenomenon is found only when supersonic flow exists and that it is basically
a form of compression process. We apply the basic concepts of gas dynamics to
analyze a shock wave in an arbitrary fluid and then develop working equations for a
perfect gas. This procedure leads naturally to the compilation of tabular information
which greatly simplifies problem solution. The chapter closes with a discussion of
shocks found in the diverging portion of supersonic nozzles.

6.2 OBJECTIVES

After completing this chapter successfully, you should be able to:

1. List the assumptions used to analyze a standing normal shock.

2. Given the continuity, energy, and momentum equations for steady one-dimen-
sional flow, utilize control volume analysis to derive the relations between
properties on each side of a standing normal shock for an arbitrary fluid.

147
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3. (Optional) Starting with the basic shock equations for an arbitrary fluid, derive
the working equations for a perfect gas relating property ratios on each side
of a standing normal shock as a function of Mach number (M) and specific
heat ratio (y).

4. (Optional) Given the working equations for a perfect gas, show that a unique
relationship must exist between the Mach numbers before and after a standing
normal shock.

5. (Optional) Explain how a normal-shock table may be developed that gives
property ratios across the shock in terms of only the Mach number before the
shock.

6. Sketch a normal-shock process on a T—s diagram, indicating as many per-
tinent features as possible, such as static and total pressures, static and total
temperatures, and velocities. Indicate each of the preceding before and after
the shock.

7. Explain why an expansion shock cannot exist.

8. Describe the second critical mode of nozzle operation. Given the area ratio
of a converging—diverging nozzle, determine the operating pressure ratio that
causes operation at the second critical point.

9. Describe how a converging—diverging nozzle operates between first and sec-
ond critical points.

10. Demonstrate the ability to solve typical standing normal-shock problems by
use of tables and equations.

6.3 SHOCK ANALYSIS—GENERAL FLUID

Figure 6.1 shows a standing normal shock in a section of varying area. We first
establish a control volume that includes the shock region and an infinitesimal amount
of fluid on each side of the shock. In this manner we deal only with the changes that
occur across the shock. It is important to recognize that since the shock wave is so thin
(about 107% m), a control volume chosen in the manner described above is extremely
thin in the x-direction. This permits the following simplifications to be made without
introducing error in the analysis:

1. The area on both sides of the shock may be considered to be the same.

2. There is negligible surface in contact with the wall, and thus frictional effects
may be omitted.

We begin by applying the basic concepts of continuity, energy, and momentum
under the following assumptions:

Steady one-dimensional flow
Adiabatic 8g =0ords, =0
No shaft work Swy =0



6.3 SHOCK ANALYSIS—GENERAL FLUID 149

Figure 6.1 Control volume for shock analysis.

Neglect potential
Constant area
Neglect wall shear

Continuity

But since the area is constant,

Energy

We start with

P1A1VI = pr Ay Vs

pVi=m;V,

hrl+q=hr2+ws

For adiabatic and no work, this becomes

or

htl = hrz

(2.30)
6.1)

(6.2)

(3.19)

6.3)



150 STANDING NORMAL SHOCKS

VZ
L =y +

h
1+ 28, 28,

(6.4)

Momentum

The x-component of the momentum equation for steady one-dimensional flow is
m
> Fo=— (Vou, = Vin,) (3.46)
8¢
which when applied to Figure 6.1 becomes
m
Y Fo= o (Ve = Vi) (6.5)

From Figure 6.1 we can also see that the force summation is
Z Fy = p1Ai — ppAs = (p1 — p2)A (6.6)

Thus the momentum equation in the direction of flow becomes

pAV

c

(pr— pA = ;(Vz —vy =" —w 6.7)

With m written as pAV, we can cancel the area from both sides. Now the pV
remaining can be written as either p; V| or p,V, [see equation (6.2)] and equation
(6.7) becomes

p2Vy® = piV?

pPrl—prp=—""" (6.8)
8c
or
VZ VZ
p1+p‘g‘ = p+ 22 6.9)

For the general case of an arbitrary fluid, we have arrived at three governing
equations: (6.2), (6.4), and (6.9). A typical problem would be: Knowing the fluid and
the conditions before the shock, predict the conditions that would exist after the shock.
The unknown parameters are then four in number (o2, pa, h, V2), which requires
additional information for a problem solution. The missing information is supplied
in the form of property relations for the fluid involved. For the general fluid (not a



6.4 WORKING EQUATIONS FOR PERFECT GASES 151
perfect gas), this leads to iterative-type solutions, but with modern digital computers
these can be handled quite easily.

6.4 WORKING EQUATIONS FOR PERFECT GASES

In Section 6.3 we have seen that a typical normal-shock problem has four unknowns,
which can be found through the use of the three governing equations (from continuity,
energy, and momentum concepts) plus additional information on property relations.
For the case of a perfect gas, this additional information is supplied in the form of an

equation of state and the assumption of constant specific heats. We now proceed to
develop working equations in terms of Mach numbers and the specific heat ratio.

Continuity

We start with the continuity equation developed in Section 6.3:
piVi= V2 (6.2)
Substitute for the density from the perfect gas equation of state:
p=pRT (1.13)
and for the velocity from equations (4.10) and (4.11):
V=Ma=M\ygRT (6.10)

Show that the continuity equation can now be written as

piMy  pa M,
— = (6.11)
vTi VT
Energy
From Section 6.3 we have
htl = hrz (6-3)

But since we are now restricted to a perfect gas for which enthalpy is a function of
temperature only, we can say that

Th=Tn (6.12)

Recall from Chapter 4 that for a perfect gas with constant specific heats,
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—1 )
T,=T 1+TM (4.18)

Hence the energy equation across a standing normal shock can be written as

1 1
T, (1 + VTM12> =T (1 +Y . M22> (6.13)

Momentum

The momentum equation in the direction of flow was seen to be

nV? 02 V,?
P+ ‘gl =p,+ 22 (6.9)

c c

Substitutions are made for the density from the equation of state (1.13) and for the
velocity from equation (6.10):

pi Mlzygcm) ( 12 ) (MfygcRTZ)
o )| —————— )=, + |57 )| | ————— (6.14)
n (RT1>< 2. P2\ &py 2.

and the momentum equation becomes
pi(1+yM}) =pr(1+yM3) (6.15)

The governing equations for a standing normal shock have now been simplified
for a perfect gas and for convenience are summarized below.

My p2 M,
L N ] 6.11)
NN
-1 -1
T (1 + VTM12> =7 (1 + %Mﬁ) 6.13)
p(1+yM?)=p(1+yM)?) (6.15)

There are seven variables involved in these equations:
Vs p1, My, Ty, pa, Mo, T

Once the gas is identified, y is known, and a given state preceding the shock fixes pj,
M|, and T;. Thus equations (6.11), (6.13), and (6.15) are sufficient to solve for the
unknowns after the shock: p,, M, and T5.
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Rather than struggle through the details of the solution for every shock problem

that we encounter, let’s solve it once and for all right now. We proceed to combine the
equations above and derive an expression for M; in terms of the information given.

First, we rewrite equation (6.11) as
M T
P oL (6.16)
p2M> T,

and equation (6.13) as

I _ (1 +l - 1)/2]M22>” i 6.1
L \1+[y—1/2IM? '
and equation (6.15) as
p_ LyMy (6.18)
pr 1+yMp? '

We then substitute equations (6.17) and (6.18) into equation (6.16), which yields

(%) M (1 +Iy ~ 1)/2]M22>1/2 (6.19)

T+yM?) My \1+[(y — 1)/21M;?

At this point notice that M, is a function of only M| and y. A trivial solution of
this is seen to be M| = M,, which represents the degenerate case of no shock. To
solve the nontrivial case, we square equation (6.19), cross-multiply, and arrange the
result as a quadratic in M,%:

AM2) +BM+C=0 (6.20)
where A, B, and C are functions of M, and y. Only if you have considerable moti-

vation should you attempt to carry out the tedious algebra (or to utilize a computer
utility, see Section 6.9) required to show that the solution of this quadratic is

2 M12+2/()’_1)

= 6.21
P Ry/(y = DIMPE -1 2D

For our typical shock problem the Mach number after the shock is computed
with the aid of equation (6.21), and then 7, and p, can easily be found from equa-
tions (6.13) and (6.15). To complete the picture, the total pressures p;; and p;,
can be computed in the usual manner. It turns out that since M, is supersonic, M,
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Figure 6.2 T-—s diagram for typical normal shock.

will always be subsonic and a typical problem is shown on the T—s diagram in
Figure 6.2.

The end points 1 and 2 (before and after the shock) are well-defined states, but
the changes that occur within the shock do not follow an equilibrium process in the
usual thermodynamic sense. For this reason the shock process is usually shown by a
dashed or wiggly line. Note that when points 1 and 2 are located on the 7—s diagram,
it can immediately be seen that an entropy change is involved in the shock process.
This is discussed in greater detail in the next section.

Example 6.1 Helium is flowing at a Mach number of 1.80 and enters a normal shock.
Determine the pressure ratio across the shock.

We use equation (6.21) to find the Mach number after the shock and (6.15) to obtain the
pressure ratio.

) MZ2+2/(y —1) (1.8)2 4+ 2/(1.67—1)
2 = 2 = > =0.411
Ry/(y — DIM2 =1 [(2x 1.67)/(1.67 — D](1.8)> — 1

M, = 0.641

p2_ l4yMP 14 16DA8 o
pr l4+yM? T 141670411 7

6.5 NORMAL-SHOCKTABLE

We have found that for any given fluid with a specific set of conditions entering a
normal shock there is one and only one set of conditions that can result after the
shock. An iterative solution results for a fluid that cannot be treated as a perfect gas,
whereas the case of the perfect gas produces an explicit solution. The latter case opens
the door to further simplifications since equation (6.21) yields the exit Mach number
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M, for any given inlet Mach number M; and we can now eliminate M, from all
previous equations.
For example, equation (6.13) can be solved for the temperature ratio

T 1+ —D/2AM?

= 5 (6.22)
i 1+[(y —D/2IM,
If we now eliminate M, by the use of equation (6.21), the result will be
L_ {1+ — D/2IMPHR2y /(y — DIM” — 1) 6.23)
Ty [(y + D?/2(y — DIM}?
Similarly, equation (6.15) can be solved for the pressure ratio
1 M2
P2 — le (6.24)
p l+yM,
and elimination of M, through the use of equation (6.21) will produce
2 -1
Pro ¥ yp-Y (6.25)

oyt Y|

If you are very persistent (and in need of algebraic exercise or want to do it with a
computer), you might carry out the development of equations (6.23) and (6.25). Also,
these can be combined to form the density ratio

P2 (y + 1)M12

=t - (6.26)
Py — M2 +2

Other interesting ratios can be developed, each as a function of only M, and y.
For example, since

y—1 y/(y=1)
pi=p (1 + Tzvﬂ) 4.21)
we may write

(6.27)

P2 m <1 +(y — 1)/2]M22>W‘“
o o \1+1(y — D/2IM?

The ratio p,/p; can be eliminated by equation (6.25) with the following result:

& B < [()/ 4 1)/2]M12 )V/(V_]) I:Z—VMZ B y—_l]l/(l—)/) (6 28)
pn \1+[(y — D/21M? Lo+l |
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Equation (6.28) is extremely important since the stagnation pressure ratio is related
to the entropy change through equation (4.28):

P2 _ -asiR (4.28)
Pr1

In fact, we could combine equations (4.28) and (6.28) to obtain an explicit relation
for As as a function of M; and y.

Note that for a given fluid (y known), the equations (6.23), (6.25), (6.26), and
(6.28) express property ratios as a function of the entering Mach number only. This
suggests that we could easily construct a table giving values of M,, T>/ Ty, p2/p1,
02/ P15 Pr2/ Pt1, and so on, versus M for a particular y. Such a table of normal-shock
parameters is given in Appendix H. This table greatly aids problem solution, as the
following example shows.

Example 6.2 Fluid is air and can be treated as a perfect gas. If the conditions before the shock
are: M, = 2.0, p; = 20 psia, and 71 = 500°R; determine the conditions after the shock and
the entropy change across the shock.

First we compute p;; with the aid of the isentropic table.

143 <
Pl = —p1 =
D1

20) = 156.5 psi
0.1278>( ) psta

Now from the normal-shock table opposite M; = 2.0, we find

T
My, =057735 22 —4s5000 2=16875 P2 072087
)4 T, )23
Thus
P2 .
pr = 22 p) = (4.5)(20) = 90 psia
D1
T
Ty = T = (1.6875)(500) = 844°R
1
pio = P2 p1 = (0.72087)(156.5) = 112.8 psia
Pr1

Or p;, can be computed with the aid of the isentropic table:

P2 1 .
P2 = —p2= =1 12

To compute the entropy change, we use equation (4.28):

)23
Pr1
As
R

=0.72087 = ¢ 2%/

=0.3273
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As = (0.3273)(53.3)

= 0.0224 Btu/lbm-"R
778

It is interesting to note that as far as the governing equations are concerned, the
problem in Example 6.2 could be completely reversed. The fundamental relations of
continuity (6.11), energy (6.13), and momentum (6.15) would be satisfied completely
if we changed the problem to M; = 0.577, p; =90 psia, T = 844°R, with the result-
ing M, = 2.0, p, = 20 psia, and 7, = 500°R (which would represent an expansion
shock). However, in the latter case the entropy change would be negative, which
clearly violates the second law of thermodynamics for an adiabatic no-work system.

Example 6.2 and the accompanying discussion clearly show that the shock phe-
nomenon is a one-way process (i.e., irreversible). It is always a compression shock,
and for a normal shock the flow is always supersonic before the shock and subsonic
after the shock. One can note from the table that as M increases, the pressure, temper-
ature, and density ratios increase, indicating a stronger shock (or compression). One
can also note that as M| increases, p;»/p;; decreases, which means that the entropy
change increases. Thus as the strength of the shock increases, the losses also increase.

Example 6.3 Air has a temperature and pressure of 300 K and 2 bar abs., respectively. It is
flowing with a velocity of 868 m/s and enters a normal shock. Determine the density before
and after the shock.

p1 2 x 10° 3
A e Y
RT, ~ (287)(300) gm

a1 = (ygeRTHY? = [(1.4)(1)(287)(300)]/% = 347 m/s

Vi 868
— =-—=250
a) 347

P11 =

M, =

From the shock table we obtain

T 1
P2 _ P27 (7125 =3.333
01 1 2.1375

p2 = 3.3333p; = (3.3333)(2.32) = 7.73 kg/m’

Example 6.4 Oxygen enters the converging section shown in Figure E6.4 and a normal shock
occurs at the exit. The entering Mach number is 2.8 and the area ratio A; /A, = 1.7. Compute
the overall static temperature ratio 73/ T;. Neglect all frictional losses.

Ay Ay Ay AT
AT AL AFAS

1
= (ﬁ) (3.5001)(1) =2.06

Thus M, & 2.23, and from the shock table we get

T
M; = 0.5431 and F3=1.8835

2

s T ToT 1
337200 8835)(0.5014) (1)~ = 2.43
T TTxTh T 0.3894
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Figure E6.4

We can also develop a relation for the velocity change across a standing normal

shock for use in Chapter 7. Starting with the basic continuity equation

o1V = ;W2
we introduce the density relation from (6.26):

Va_pi_ y—HM2+2
Vi (y + DHM?

and subtract 1 from each side:

Vi-Vi (= DMP42-(y + M2

Vi (y + HM}?

V-V 2(1-Mp)
Miay, — (y +1)M?

or

v,—v2_( 2 )(Mﬁ-l)
a \y+1 M,

6.2)

(6.29)

(6.30)

(6.31)

(6.32)

This is another parameter that is a function of M and y and thus may be added to our
shock table. Its usefulness for solving certain types of problems will become apparent

in Chapter 7.
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6.6 SHOCKS IN NOZZLES

In Section 5.7 we discussed the isentropic operations of a converging—diverging
nozzle. Remember that this type of nozzle is physically distinguished by its area
ratio, the ratio of the exit area to the throat area. Furthermore, its flow conditions are
determined by the operating pressure ratio, the ratio of the receiver pressure to the
inlet stagnation pressure. We identified two significant critical pressure ratios. For any
pressure ratio above the first critical point, the nozzle is not choked and has subsonic
flow throughout (typical venturi operation). The first critical point represents flow
that is subsonic in both the convergent and divergent sections but is choked with a
Mach number of 1.0 in the throat. The third critical point represents operation at the
design condition with subsonic flow in the converging section and supersonic flow
in the entire diverging section. It is also choked with Mach 1.0 in the throat. The
first and third critical points are the only operating points that have (1) isentropic
flow throughout, (2) a Mach number of 1 at the throat, and (3) exit pressure equal to
receiver pressure.

Remember that with subsonic flow at the exit, the exit pressure must equal the
receiver pressure. Imposing a pressure ratio slightly below that of the first critical
point presents a problem in that there is no way that isentropic flow can meet the
boundary condition of pressure equilibrium at the exit. However, there is nothing
to prevent a nonisentropic flow adjustment from occurring within the nozzle. This
internal adjustment takes the form of a standing normal shock, which we now know
involves an entropy change.

As the pressure ratio is lowered below the first critical point, a normal shock forms
just downstream of the throat. The remainder of the nozzle is now acting as a diffuser
since after the shock the flow is subsonic and the area is increasing. The shock will
locate itself in a position such that the pressure changes that occur ahead of the shock,
across the shock, and downstream of the shock will produce a pressure that exactly
matches the outlet pressure. In other words, the operating pressure ratio determines
the location and strength of the shock. An example of this mode of operation is shown
in Figure 6.3. As the pressure ratio is lowered further, the shock continues to move
toward the exit. When the shock is located at the exit plane, this condition is referred
to as the second critical point.

We have ignored boundary layer effects that are always present due to fluid viscos-
ity. These effects sometimes cause what are known as lambda shocks. It is important
for you to understand that real flows are often much more complicated than the ide-
alizations that we are describing.

If the operating pressure ratio is between the second and third critical points, a
compression takes place outside the nozzle. This is called overexpansion (i.e., the
flow has been expanded too far within the nozzle). If the receiver pressure is below
the third critical point, an expansion takes place outside the nozzle. This condition is
called underexpansion. We investigate these conditions in Chapters 7 and 8 after the
appropriate background has been covered.

For the present we proceed to investigate the operational regime between the first
and second critical points. Let us work with the same nozzle and inlet conditions that
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Figure 6.3 Operating modes for DeLaval nozzle.

we used in Section 5.7. The nozzle has an area ratio of 2.494 and is fed by air at 100
psia and 600°R from a large tank. Thus the inlet conditions are essentially stagnation.
For these fixed inlet conditions we previously found that a receiver pressure of 96.07
psia (an operating pressure ratio of 0.9607) identifies the first critical point and a
receiver pressure of 6.426 psia (an operating pressure ratio of 0.06426) exists at the
third critical point.

What receiver pressure do we need to operate at the second critical point? Figure
6.4 shows such a condition and you should recognize that the entire nozzle up to the
shock is operating at its design or third critical condition.

From the isentropic table at A/A* = 2.494, we have

M; =244 and 22 =0.06426

P13

From the normal-shock table for M3 = 2.44, we have

M, =05189 and 2% =6.7792

pP3
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Figure 6.4 Operation at second critical.

and the operating pressure ratio will be

Pree _ P4 _ P4 P3 PO _ (67792)(0.06426)(1) = 0.436

P P P3 P13 Pri

or for p; = p;1 = 100 psia,
P4 = Prec = 43.6 psia

Thus for our converging—diverging nozzle with an area ratio of 2.494, any operating
pressure ratio between 0.9607 and 0.436 will cause a normal shock to be located
someplace in the diverging portion of the nozzle.

Suppose that we are given an operating pressure ratio of 0.60. The logical question
to ask is: Where is the shock? This situation is shown in Figure 6.5. We must take
advantage of the only two available pieces of information and from these construct a
solution. We know that

Ps =p_. = 60 psia

rec

Ag/A, = 2.494

pPL=p,= 100 psia

Figure 6.5 DeLaval nozzle with normal shock in diverging section.
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A
25 2494 and P2 =060

A Pr1

We may also assume that all losses occur across the shock and we know that M, =
1.0. It might also be helpful to visualize the flow on a T—s diagram, and this is shown
in Figure 6.6. Since there are no losses up to the shock, we know that

A=A
Thus
Asps _ As ps
Ay pn A pn

.

We also know from equation (5.35) that for the case of adiabatic no-work flow of a
perfect gas,

(6.33)

Al*ptl = As*PtS (6.34)
Thus

Asps _ Asps

Al pn As prs
In summary:

N

Figure 6.6 T-s diagram for DeLaval nozzle with normal shock. (For physical picture see
Figure 6.5.)



6.6 SHOCKS IN NOZZLES 163

Asps _ As ps _ Asps
Ay pn Al pn ASpis

£

(2.494)(0.6) = 1.4964

(6.35)

Note that we have manipulated the known information into an expression with all
similar station subscripts. In Section 5.6 we showed with equation (5.43) that the
ratio Ap/A* p, is a simple function of M and y and thus is listed in the isentropic
table. A check in the table shows that the exit Mach number is M5 ~ 0.38.

To locate the shock, seek the ratio

1
Pis _ PsPs _ < >(0.6) — 0.664

Pr1 Ps5 Pl 0.9052

Given

From isentropic table at M = 0.38
and since all the loss is assumed to take place across the shock, we have

Dis=pi and  p; = pp

Thus
Pt _ 5 _ 0.664
D3 P11

Knowing the total pressure ratio across the shock, we can determine from the normal-
shock table that M3 ~ 2.12, and then from the isentropic table we note that this Mach
number will occur at an area ratio of about A3/ A;* = A3/A, = 1.869. More accurate
answers could be obtained by interpolating within the tables.

We see that if we are given a physical converging—diverging nozzle (area ratio is
known) and an operating pressure ratio between the first and second critical points,
it is a simple matter to determine the position and strength of the normal shock in the
diverging section.

Example 6.5 A converging—diverging nozzle has an area ratio of 3.50. At off-design condi-
tions, the exit Mach number is observed to be 0.3. What operating pressure ratio would cause
this situation?

Using the section numbering system of Figure 6.5, for M3 = 0.3, we have

A
P25 19119
ptSAj
A AX\ A A 1
ps _ Ps 5* (Prﬁ 5*> Z1 72 (1.9119)(1)(1) (—) =0.546
P pisAs \pnA[") Ay As 3.50

Could you now find the shock location and Mach number?
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Example 6.6 Air enters a converging—diverging nozzle that has an overall area ratio of 1.76.
A normal shock occurs at a section where the area is 1.19 times that of the throat. Neglect
all friction losses and find the operating pressure ratio. Again, we use the numbering system
shown in Figure 6.5.

From the isentropic table at A3/A, = 1.19, M3 = 1.52.

From the shock table, M4 = 0.6941 and p;a/p;3 = 0.9233. Then

As _ As Ay Ay Af
AS* Ay Ay A4”F AS*

1
= (1.76) (m) (1.0988)(1) = 1.625

Thus M5 = 0.3809.

Ps _ Ps Pspupn
D1 Pt5 Pia Pr3 Pri

= (0.9007)(1)(0.9233)(1) = 0.832

6.7 SUPERSONIC WIND TUNNEL OPERATION

To provide a test section with supersonic flow requires a converging—diverging noz-
zle. To operate economically, the nozzle—test-section combination must be followed
by a diffusing section which also must be converging—diverging. This configuration
presents some interesting problems in flow analysis. Starting up such a wind tunnel
is another example of nozzle operation at pressure ratios above the second critical
point. Figure 6.7 shows a typical tunnel in its most unfavorable operating condition,
which occurs at startup. A brief analysis of the situation follows.

Q © 0,00 O
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I
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I | I
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| |
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[
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oafpb-foor—— —

Position in Wind Tunnel

Figure 6.7 Supersonic tunnel at startup (with associated Mach number variation).
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As the exhauster is started, this reduces the pressure and produces flow through
the tunnel. At first the flow is subsonic throughout, but at increased power settings
the exhauster reduces pressures still further and causes increased flow rates until the
nozzle throat (section 2) becomes choked. At this point the nozzle is operating at its
first critical condition. As power is increased further, a normal shock is formed just
downstream of the throat, and if the tunnel pressure is decreased continuously, the
shock will move down the diverging portion of the nozzle and pass rapidly through
the test section and into the diffuser. Figure 6.8 shows this general running condition,
which is called the most favorable condition.

We return to Figure 6.7, which shows the shock located in the test section. The
variation of Mach number throughout the flow system is also shown for this case.
This is called the most unfavorable condition because the shock occurs at the highest
possible Mach number and thus the losses are greatest. We might also point out that
the diffuser throat (section 5) must be sized for this condition. Let us see how this
is done.

Recall the relation p; A* = constant. Thus

pt2A£k = P15 As*

But since Mach 1 exists at both sections 2 and 5 (during startup),

A2 = A2* and A5 = AS*

I_ Test L l
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Figure 6.8 Supersonic tunnel in running condition (with associated pressure variation).
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Hence

Pr2As = pisAs (6.36)

Due to the shock losses (and other friction losses), we know that p,s < p;», and
therefore A5 must be greater than A,. Knowing the test-section-design Mach number
fixes the shock strength in this unfavorable condition and As is easily determined from
equation (6.36). Keep in mind that this represents a minimum area for the diffuser
throat. If it is made any smaller than this, the tunnel could never be started (i.e., we
could never get the shock into and through the test section). In fact, if A5 is made too
small, the flow will choke first in this throat and never get a chance to reach sonic
conditions in section 2.

Once the shock has passed into the diffuser throat, knowing that As > A, we
realize that the tunnel can never run with sonic velocity at section 5. Thus, to operate
as a diffuser, there must be a shock at this point, as shown in Figure 6.8. We have also
shown the pressure variation through the tunnel for this running condition.

To keep the losses during running at a minimum, the shock in the diffuser should
occur at the lowest possible Mach number, which means a small throat. However,
we have seen that it is necessary to have a large diffuser throat in order to start the
tunnel. A solution to this dilemma would be to construct a diffuser with a variable-
area throat. After startup, As could be decreased, with a corresponding decrease in
shock strength and operating power. However, the power required for any installation
must always be computed on the basis of the unfavorable startup condition.

Although the supersonic wind tunnel is used primarily for aeronautically oriented
work, its operation serves to solidify many of the important concepts of variable-area
flow, normal shocks, and their associated flow losses. Equally important is the fact
that it begins to focus our attention on some practical design applications.

6.8 WHEN y IS NOT EQUALTO 1.4

As indicated in Chapter 5, we discuss the effects that changes from y = 1.4 bring
about. Figures 6.9 and 6.10 show curves for 7,/ 7} and p,/p; versus Mach number
in the interval 1 < M < 5 entering the shock. This is done for various ratios of the
specific heats (y = 1.13, 1.4, and 1.67).

1. Figure 6.9 depicts T,/ T; across a normal-shock wave. As can be seen in the
figure, the temperature ratio is very sensitive to y .

2. On the other hand, as shown in Figure 6.10, the pressure ratio across the normal
shock is relatively less sensitive to y. Below M = 1.5 the pressure ratio
tabulated in Appendix H could be used with little error for any y.
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Strictly speaking, these curves are representative only for cases where y variations
are negligible within the flow. However, they offer hints as to what magnitude of
changes are to be expected in other cases. Flows where y -variations are not negligible
within the flow are treated in Chapter 11.

6.9 (OPTIONAL) BEYOND THE TABLES

As illustrated in Chapter 5, one can eliminate a lot of interpolation and get accurate
answers for any ratio of the specific heats y and/or any Mach number by using a
computer utility such as MAPLE. For instance, we can easily calculate the left-hand
side of equations (6.21), (6.23), (6.25), (6.26), and (6.28) to a high degree of precision
given M and y (or calculate any one of the three variables given the other two).

Example 6.7 Let’s go back to Example 6.3, where the density ratio across the shock is
desired. We can compute this from equation (6.26):

n_ + HM?

=T o (6.26)
o (y—=DMP2+2

Let

g = y, aparameter (the ratio of specific heats)
X = the independent variable (which in this case is M)

Y = the dependent variable (which in this case is p2/p01)

Listed below are the precise inputs and program that you use in the computer.

[>g :=1.4: X :=2.5:
> Y := ((g+1)*X"2)/((g-1)*X"2 + 2);
Y :=3.333333333

which is the desired answer.

A rather unique capability of MAPLE is its ability to solve equations symbolically
(in contrast to strictly numerically). This comes in handy when trying to reproduce
proofs of somewhat complicated algebraic expressions.

Example 6.8 Suppose that we want to solve for M, in equation (6.19):

(1 +yM22> M (1 +I(y - 1)/2]1\422)”2

T+yM2) My~ \1+[(y —1)/21M> 19

Let

g = y, aparameter (the ratio of specific heats)

X = the independent variable (which in this case is M 12)
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Y = the dependent variable (which in this case is Mzz)

Listed below are the precise inputs and program that you use in the computer.

> solve ((((1 + g*Y)"2)/((1 + g*X)"2))*(X/Y) = (2 +
(g - 1)*Y) /(2 + (g-1)*X), Y);
2+ Xg—X
" —g+1+2Xg

which are the desired answers.

Above are the two roots of Y (or Mzz), because we are solving a quadratic. With some
manipulation we can get the second or nontrivial root to look like equation (6.21). It is easy to
check it by substituting in some numbers and comparing results with the normal-shock table.

The type of calculation shown above can be integrated into more sophisticated
programs to handle most gas dynamic calculations.

6.10 SUMMARY

We examined stationary discontinuities of a type perpendicular to the flow. These
are finite pressure disturbances and are called standing normal shock waves. If con-
ditions are known ahead of a shock, a precise set of conditions must exist after the
shock. Explicit solutions can be obtained for the case of a perfect gas and these lend
themselves to tabulation for various specific heat ratios.

Shocks are found only in supersonic flow, and the flow is always subsonic after a
normal shock. The shock wave is a type of compression process, although a rather
inefficient one since relatively large losses are involved in the process. (What has
been lost?) Shocks provide a means of flow adjustment to meet imposed pressure
conditions in supersonic flow.

As in Chapter 5, most of the equations in this chapter need not be memorized.
However, you should be completely familiar with the fundamental relations that
apply to all fluids across a normal shock. These are equations (6.2), (6.4), and (6.9).
Essentially, these say that the end points of a shock have three things in common:

1. The same mass flow per unit area
2. The same stagnation enthalpy

3. The same value of p + pV?/g.

The working equations that apply to perfect gases, equations (6.11), (6.13), and
(6.15), are summarized in Section 6.4. In Section 6.5 we developed equation (6.32)
and noted that it can be very useful in solving certain types of problems. You should
also be familiar with the various ratios that have been tabulated in Appendix H. Just
knowing what kind of information you have available is frequently very helpful in
setting up a problem solution.
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STANDING NORMAL SHOCKS

PROBLEMS

Unless otherwise indicated, you may assume that there is no friction in any of the following
flow systems; thus the only losses are those generated by shocks.

6.1.

6.2.

6.3.

6.4.

6.5.

A standing normal shock occurs in air that is flowing at a Mach number of 1.8.
(a) What are the pressure, temperature, and density ratios across the shock?
(b) Compute the entropy change for the air as it passes through the shock.

(c) Repeat part (b) for flows at M = 2.8 and 3.8.

The difference between the total and static pressure before a shock is 75 psi. What is
the maximum static pressure that can exist at this point ahead of the shock? The gas is
oxygen. (Hint: Start by finding the static and total pressures ahead of the shock for the
limiting case of M = 1.0.)

In an arbitrary perfect gas, the Mach number before a shock is infinite.

(a) Determine a general expression for the Mach number after the shock. What is the
value of this expression for y = 1.4?

(b) Determine general expressions for the ratios p»/pi1, To/T1, p2/p1, and p;a/pii.
Do these agree with the values shown in Appendix H for y = 1.4?

It is known that sonic velocity exists in each throat of the system shown in Figure P6.4.
The entropy change for the air is 0.062 Btu/lbm-°R. Negligible friction exists in the
duct. Determine the area ratios A3/A; and Ay/A;.

—— e

|
i
1
|
|
|
®M1=1.0 @ @M3=1.0

Figure P6.4

Air flows in the system shown in Figure P6.5. It is known that the Mach number after
the shock is M3 = 0.52. Considering p; and p», it is also known that one of these
pressures is twice the other.

(a) Compute the Mach number at section 1.

(b) What is the area ratio A;/A,?
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Shock

M, =0.52

Figure P6.5

6.6. A shock stands at the inlet to the system shown in Figure P6.6. The free-stream Mach

number is M; = 2.90, the fluid is nitrogen, A, = 0.25 m?2, and A3 = 0.20 m% Find
the outlet Mach number and the temperature ratio 73/ 7}.

N
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Shock }—/’/—é)
®

Figure P6.6

6.7. A converging—diverging nozzle is designed to produce a Mach number of 2.5 with air.

(a) What operating pressure ratio (pre/ p; inlet) will cause this nozzle to operate at the
first, second, and third critical points?

(b) If the inlet stagnation pressure is 150 psia, what receiver pressures represent oper-
ation at these critical points?

(¢) Suppose that the receiver pressure were fixed at 15 psia. What inlet pressures are
necessary to cause operation at the critical points?

6.8. Air enters a convergent—divergent nozzle at 20 x 10° N/m? and 40°C. The receiver

pressure is 2 x 10° N/m? and the nozzle throat area is 10 cm?.

(a) What should the exit area be for the design conditions above (i.e., to operate at third
critical?)

(b) With the nozzle area fixed at the value determined in part (a) and the inlet pressure
held at 20 x 10° N/m2, what receiver pressure would cause a shock to stand at the
exit?

(¢) What receiver pressure would place the shock at the throat?
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6.9.

6.10.

6.11.

6.12.

STANDING NORMAL SHOCKS

In Figure P6.9, M| = 3.0 and A; = 2.0 ft%. If the fluid is carbon monoxide and the
shock occurs at an area of 1.8 ft%, what is the minimum area possible for section 4?

U

6

Figure P6.9

A converging—diverging nozzle has an area ratio of 7.8 but is not being operated at its
design pressure ratio. Consequently, a normal shock is found in the diverging section
at an area twice that of the throat. The fluid is oxygen.

(a) Find the Mach number at the exit and the operating pressure ratio.

(b) What is the entropy change through the nozzle if there is negligible friction?

The diverging section of a supersonic nozzle is formed from the frustrum of a cone.
When operating at its third critical point with nitrogen, the exit Mach number is 2.6.

Compute the operating pressure ratio that will locate a normal shock as shown in Figure
P6.11.

x ]
(3/4)x ‘

N

_—

T

Figure P6.11

A converging—diverging nozzle receives air from a tank at 100 psia and 600°R. The
pressure is 28.0 psia immediately preceding a plane shock that is located in the di-
verging section. The Mach number at the exit is 0.5 and the flow rate is 10 lbm/sec.
Determine:

(a) The throat area.

(b) The area at which the shock is located.

(c) The outlet pressure required to operate the nozzle in the manner described above.
(d) The outlet area.

(e) The design Mach number.
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Air enters a device with a Mach number of M; = 2.0 and leaves with M, = 0.25. The
ratio of exit to inlet area is A,/A; = 3.0.

(a) Find the static pressure ratio p»/p;.
(b) Determine the stagnation pressure ratio p;»/p;1.

Oxygen, with p; = 95.5 psia, enters a diverging section of area 3.0 ft>. At the outlet the
area is 4.5 ft?, the Mach number is 0.43, and the static pressure is 75.3 psia. Determine
the possible values of Mach number that could exist at the inlet.

A converging—diverging nozzle has an area ratio of 3.0. The stagnation pressure at the
inlet is 8.0 bar and the receiver pressure is 3.5 bar. Assume that y = 1.4.

(a) Compute the critical operating pressure ratios for the nozzle and show that a shock
is located within the diverging section.

(b) Compute the Mach number at the outlet.

(¢) Compute the shock location (area) and the Mach number before the shock.

Nitrogen flows through a converging—diverging nozzle designed to operate at a Mach

number of 3.0. If it is subjected to an operating pressure ratio of 0.5:

(a) Determine the Mach number at the exit.

(b) What is the entropy change in the nozzle?

(¢) Compute the area ratio at the shock location.

(d) What value of the operating pressure ratio would be required to move the shock to
the exit?

Consider a converging—diverging nozzle feeding air from a reservoir at p; and 7. The
exit area is A, = 4A,, where Aj; is the area at the throat. The back pressure pe. is
steadily reduced from an initial p. = p1.

(a) Determine the receiver pressures (in terms of pj) that would cause this nozzle to
operate at first, second, and third critical points.

(b) Explain how the nozzle would be operating at the following back pressures:
(i) prec = p1; (i) prec = 0.990p; (iii) prec = 0.53py; (iV) prec = 0.03p;.
Draw a detailed 7—s diagram corresponding to the supersonic tunnel startup condition

(Figure 6.7). Identify the various stations (i.e., 1, 2, 3, etc.) in your diagram. You may
assume no heat transfer and no frictional losses in the system.

Consider the wind tunnel shown in Figures 6.7 and 6.8. Atmospheric air enters the
system with a pressure and temperature of 14.7 psia and 80°F, respectively, and has
negligible velocity at section 1. The test section has a cross-sectional area of 1 ft> and
operates at a Mach number of 2.5. You may assume that the diffuser reduces the ve-
locity to approximately zero and that final exhaust is to the atmosphere with negligible
velocity. The system is fully insulated and there are negligible friction losses. Find:

(a) The throat area of the nozzle.

(b) The mass flow rate.

(¢) The minimum possible throat area of the diffuser.

(d) The total pressure entering the exhauster at startup (Figure 6.7).

(e) The total pressure entering the exhauster when running (Figure 6.8).

(f) The hp value required for the exhauster (based on an isentropic compression).
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CHECKTEST

You should be able to complete this test without reference to material in the chapter.

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

Given the continuity, energy, and momentum equations in a form suitable for steady one-
dimensional flow, analyze a standing normal shock in an arbitrary fluid. Then simplify
your results for the case of a perfect gas.

Fill in the following blanks with increases, decreases, or remains constant. Across a
standing normal shock, the

(a) Temperature

(b) Stagnation pressure

(¢) Velocity

(d) Density

Consider a converging—diverging nozzle with an area ratio of 3.0 and assume operation

with a perfect gas (y = 1.4). Determine the operating pressure ratios that would cause
operation at the first, second, and third critical points.

Sketch a T—s diagram for a standing normal shock in a perfect gas. Indicate static and
total pressures, static and total temperatures, and velocities (both before and after the
shock).

Nitrogen flows in an insulated variable-area system with friction. The arearatiois Az /A1
= 2.0 and the static pressure ratio is p»/p; = 0.20. The Mach number at section 2 is
M, =3.0.

(a) What is the Mach number at section 1?

(b) Is the gas flowing from 1 to 2 or from 2 to 1?

A large chamber contains air at 100 psia and 600°R. A converging—diverging nozzle with
an area ratio of 2.50 is connected to the chamber and the receiver pressure is 60 psia.
(a) Determine the outlet Mach number and velocity.

(b) Find the As value across the shock.

(¢) Draw a T—s diagram for the flow through the nozzle.



